

Large Language Models for Recommendation: Progresses and Future Direction

Lecture Tutorial For WWW 2024

Organizers: Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, Xiangnan He

Outline

- Introduction (Fuli Feng)
- Background: LM & LM4Rec (Fuli Feng)
- Development of LLMs (Keqin Bao)
- Progress of LLM4Rec
 - LLM4Rec (Keqin Bao & Wenjie Wang)
 - QA & Coffee Break
 - Trustworthy LLM4Rec (Jizhi Zhang)
- Open Problems (Yang Zhang)
- Future Direction & Conclusions (Fuli Feng)

☐ Information explosion era

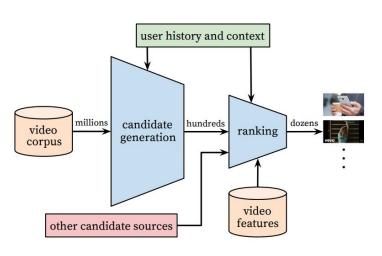
- E-commerce: 12 million items in Amazon.
- Social networks: 2.8 billion users in Facebook.
- Content sharing platforms: 720,000 hours videos uploaded to Youtube per day; 35 million videos posted on TikTok daily

□ Recommender system

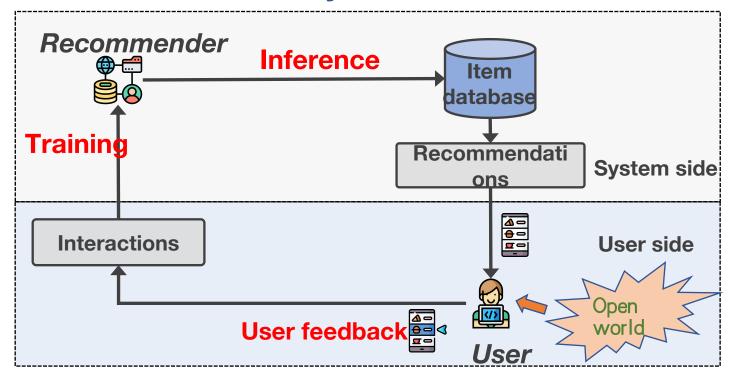


Information seeking via user history feedback

Recommendation



☐ Workflow of Recommender System



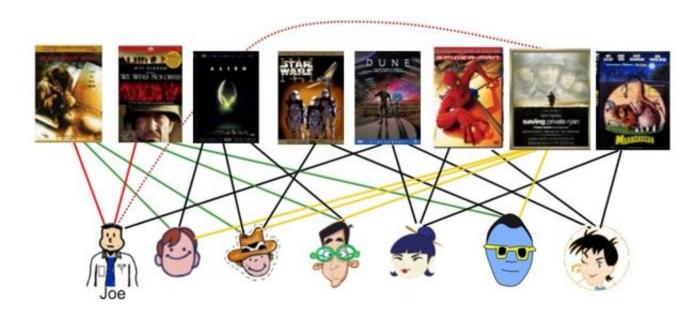
- (1) Train recommender on collected interaction data to capture user preferences.
- (2) Recommender genrates recommendations based on estimated preferences.
- (3) User engage with the recommended tiems, forming new data, affected by open world.
- (4) train recommender with new data again, either refining user interests or capturing new ones.

FISM

☐ Core idea of personalized recommendation

Collaborative filtering (CF):

Making automatic <u>predictions</u> (filtering) about the interests of a <u>user</u> by collecting preferences from <u>many users</u> (collaborating).

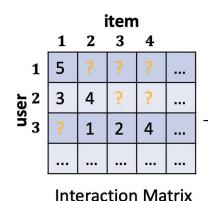


item										
	1	2 3 4		4			Memory—based CF			
1	5	?-	?-	?	•••		 User CF 			
2 2	3	4	?-	?			• Item CF			
š ₃	?	1	2	4		$ \preceq$				
							NA			
Interaction Matrix							Model-based CF			
						• MF				

☐ Core idea of personalized recommendation

Collaborative filtering (CF):

Making automatic <u>predictions</u> (filtering) about the interests of a <u>user</u> by collecting preferences from <u>many users</u> (collaborating).



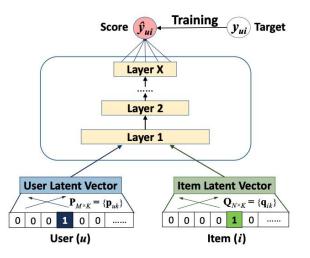
Memory-based CF

- User CF
- Item CF

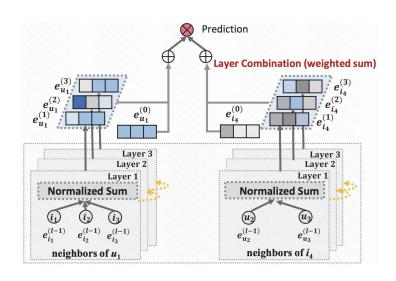
Model-based CF

- MF
- FISM

• ...

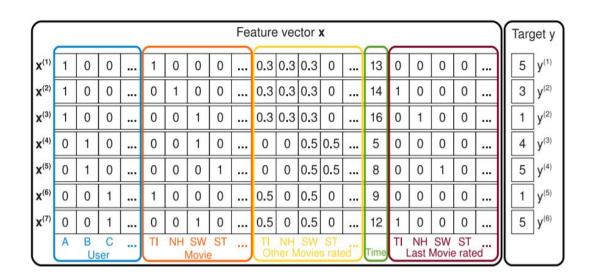


Neural CF



GCN-based CF

- ☐ Core idea of personalized recommendation
 - Collaborative filtering (CF): collaborative information
 - Content/context-aware models (CTR models): side information+context information
 - Click-Through Rate (CTR) prediction

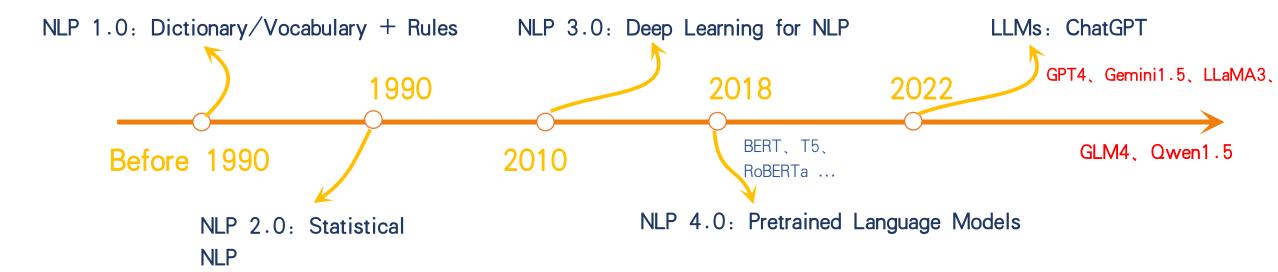


Activation Weight Softmax (2) Linear (1) PRelu/Dice (36) Concat Out SUM Pooling Product Goods 1 Weight Goods 2 Weight Goods N Weight Inputs from User Inputs from Ad Activation Unit Activation Activation Activation Goods ID Concat Concat Concat Concat Shop ID Cate ID User Profile Goods 1 Goods 2 Goods N Features User Behaviors **Deep Interest Network**

Factorization machines: FM, NFM, DeepFM

Neural network: DIN, AutoInt

The development of LMs

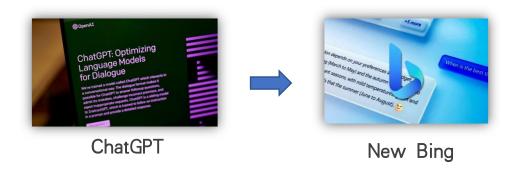


Large Language Model: billions of parameters, emergent capabilities

- Rich knowledge & Language Capabilities
- Instruction following
- In—context learning
- Chain—of—thought
- Planning
- ...

The development of LMs

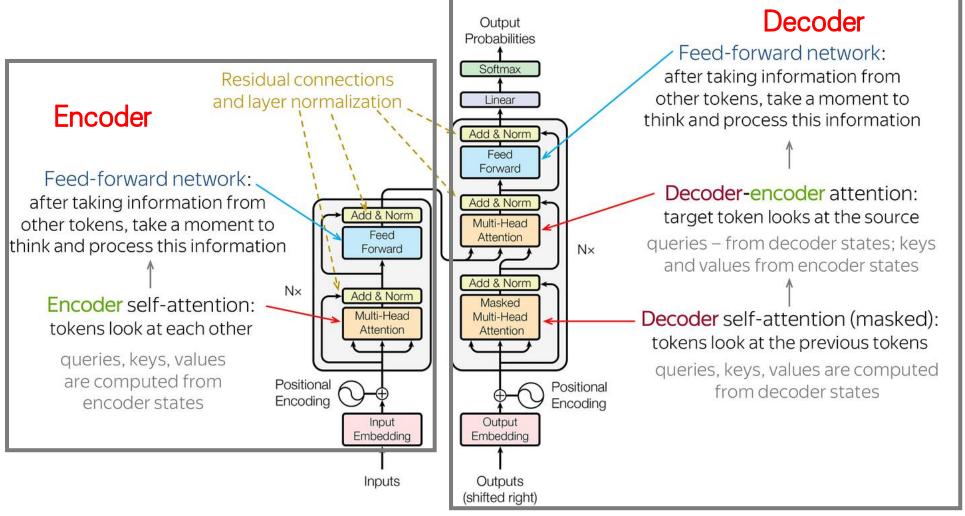
- □ LLMs such as ChatGPT and GPT4 have influenced many fields in CS and IT industry
 - □ They have eliminated a wide range of research in basic NLP and conversational system, etc.



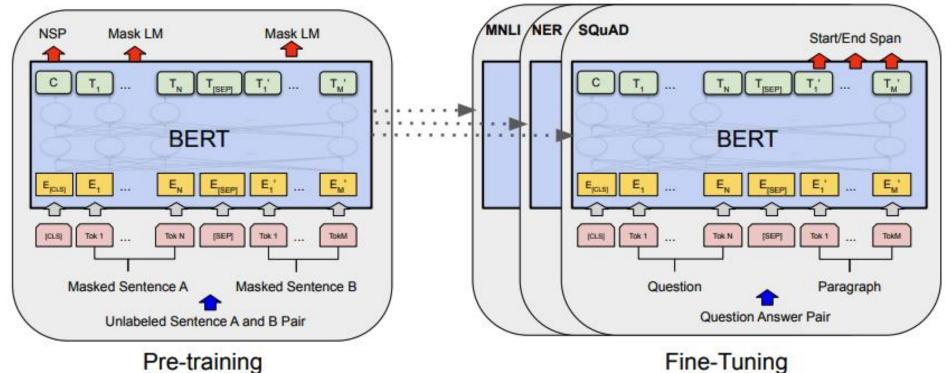
Recommender System + LLMs?

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
- Future Direction & Conclusions

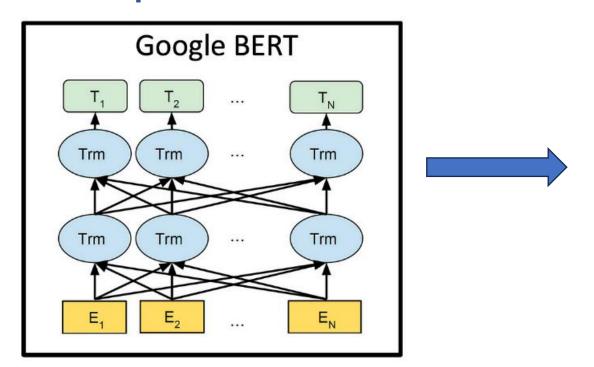


- ☐ Bert: pre-training of deep bidirectional transformers
 - ☐ Mask Language Modeling, bi-direction
 - ☐ Encoder (advantage) --> understanding

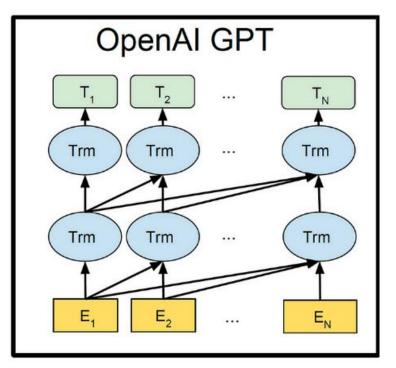


Fine-Tuning

- ☐ GPT2: generative pre-trained transformer
 - ☐ Causal language modeling
 - □ Decoder (advantage) --> Generation
 - ☐ unsupervised multi-task learner







Benefit of LMs

☐ How can recommender systems benefit from LMs

Model architecture:

Transformer Self-attention

Task formulation

Use language to formulate the recommendation task

Representation:

Textual feature,
item representation,
knowledge representation

Learning paradigm:

Pretrain-finetune,
Prompt learning

Overview of LM4rec

- LMs for recommendation
 - ☐ Utilizing LMs' model structure for recommendation.
 - □ ID-based: **BERT4Rec**, SASRec ...
 - ☐ Text-based: Recformer ...
 - ☐ LM as item encoder. UniSRec, VQRec, MoRec ...
 - □ Recommendation as natural language processing.
 - □ ID-based: **P5**, VIP5 ...
 - ☐ Text-based: **M6-Rec**, Prompt4NR ...

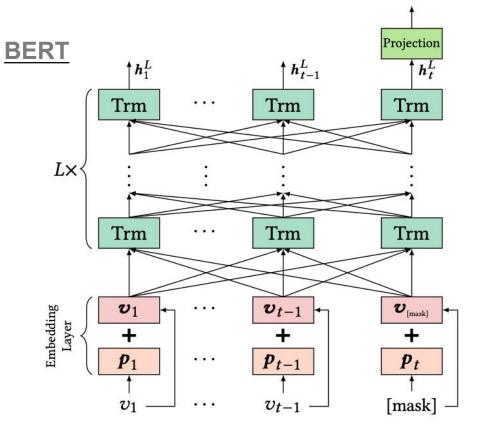
Utilizing LM Model Structure

Natural Language:

- Token sequence
- Inter-token correlations

RecSys:

- ID sequence
- Inter-item correlations



(b) BERT4Rec model architecture.

Training recommender by masked item prediction as BERT.

Self-attention

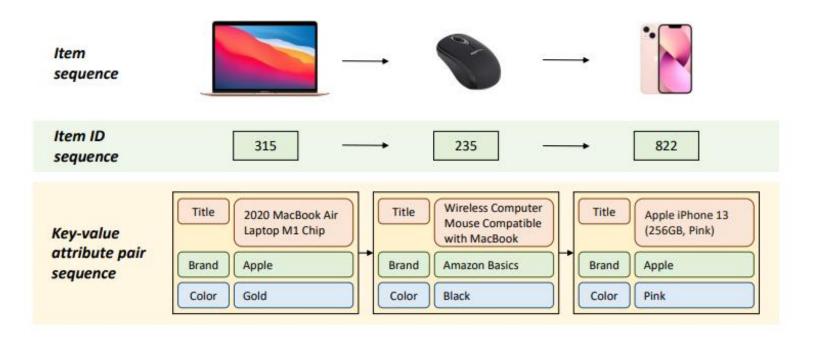
Next-item prediction

Item ID embedding

Position embedding

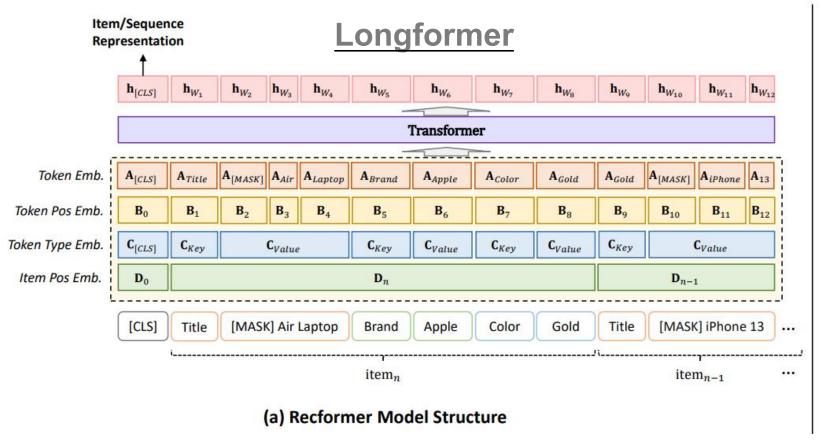
Utilizing LM Model Structure

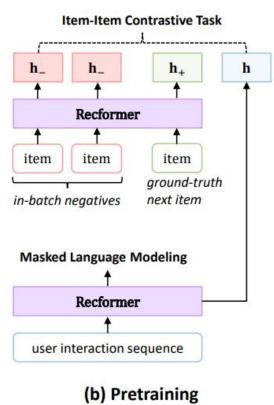
- □ Recformer: text-based
 - ☐ Text is all you need (NO item ID)
 - Only use texts to represent items.
 - Low resource, better cold-start recommendation.



Utilizing LM Model Structure

- □ Recformer: text-based
 - ☐ Text is all you need (NO item ID)





LM as Text Encoder

- □ UniSRec
 - □ Enhance the recommendatoin model by using LMs to encode the natural language representation of items.

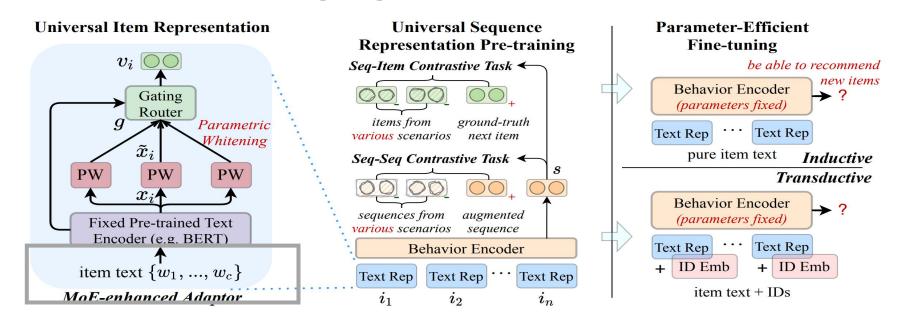
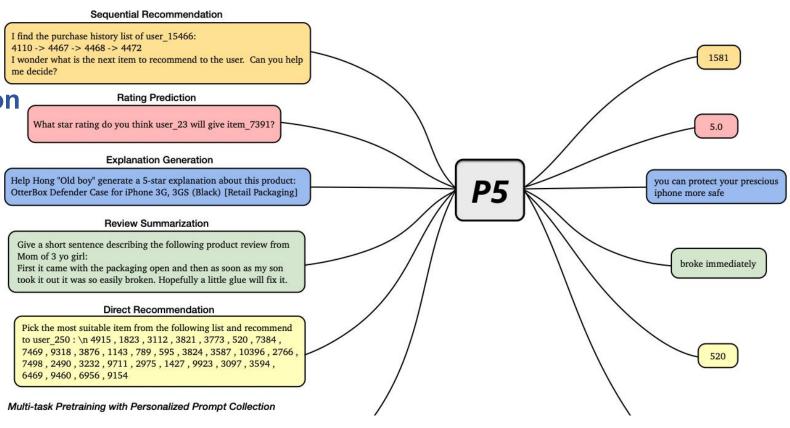


Figure 1: The overall framework of the proposed universal sequence representation learning approach (UniSRec).

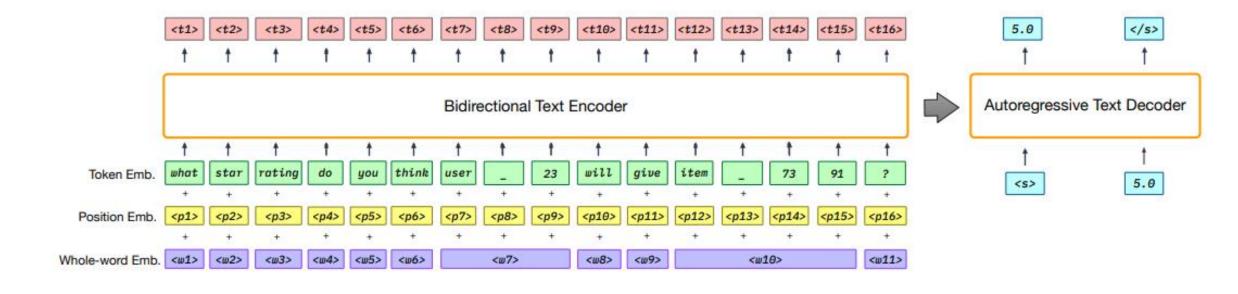
Recommendation as NLP

- **☐** Multi-task prompts
- Sequential recommendation
- Rating prediction
- Explain generation
- Review summarization
- Direct recommendation



Recommendation as NLP

- **□** P5 Architecture:
- Autoregressive decoding
- > Users and items are represented with ID information

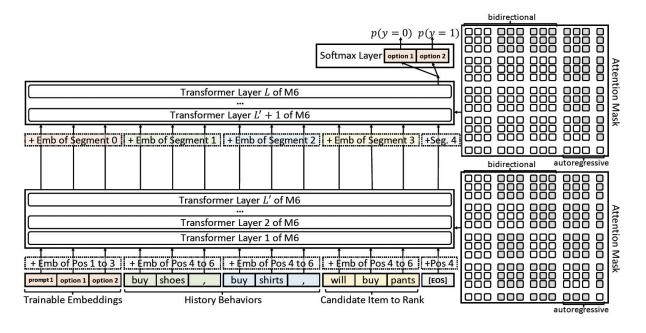


Recommendation as NLP

- M6-Rec: represent users/item with plain texts and converting the tasks to either language understanding or generation
 - M6 (~300M parameters)

- Understanding (scoring) task: CTR, CVR prediction
- Generation task: personalized product design, explanation generation...
 User description

[BOS'] December. Beijing, China. Cold weather. A male user in early twenties, searched "winter stuff" 23 minutes ago, clicked a product of category "jacket" named "men's lightweight warm winter hooded jacket" 19 minutes ago, clicked a product of category "sweatshirt" named "men's plus size sweatshirt stretchy pullover hoodies" 13 minutes ago, clicked ... [EOS'] [BOS] The user is now recommended a product of category "boots" named "waterproof hiking shoes mens outdoor". The product has a high population-level CTR in the past 14 days, among the top 5%. The user clicked the category 4 times in the last 2 years. [EOS]



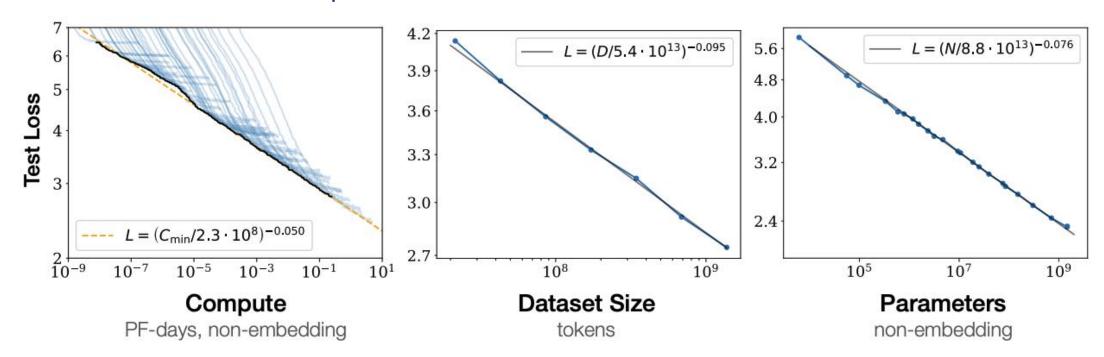
Item description

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
- Future Direction & Conclusions

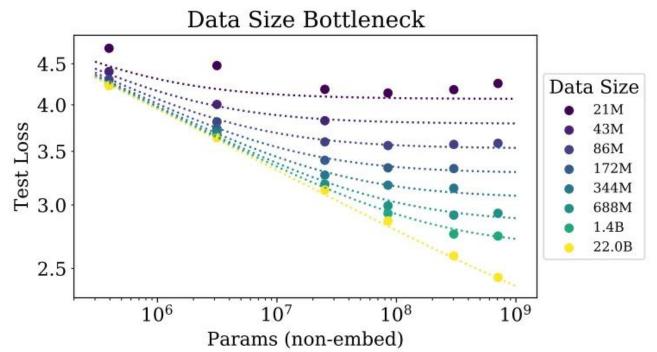
☐ Scaling Laws

- ☐ The greater the amount of the data and the model parameters, the better the performance of the model
- □ Performance can be predicted



☐ Scaling Laws

- ☐ The greater the amount of the data and the model parameters, the better the performance of the model
- □ Performance can be predicted



☐ Scaling Laws

Larger models require **fewer samples** to reach the same performance

109

1011

Test Loss 10

8

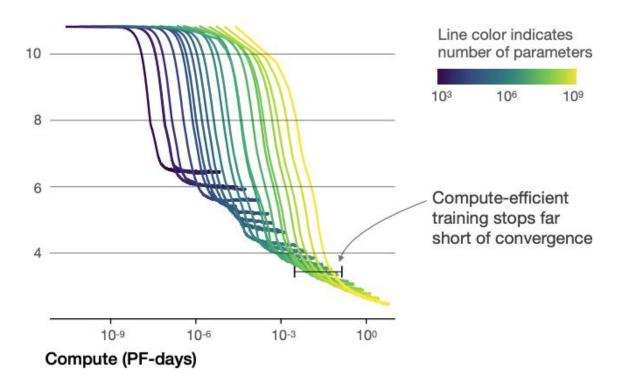
10³ Params

4

107

Tokens Processed

The optimal model size grows smoothly with the loss target and compute budget



☐ Align with human

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

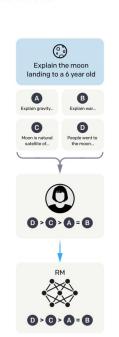
Collect compa

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.



Step 3

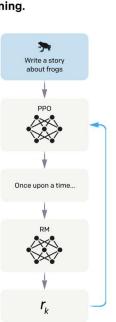
Optimize a policy against the reward model using reinforcement learning.

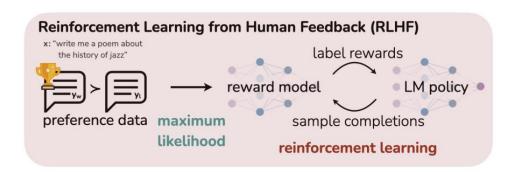
A new prompt is sampled from the dataset.

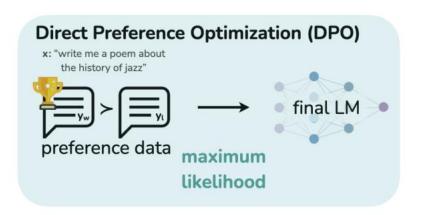
The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



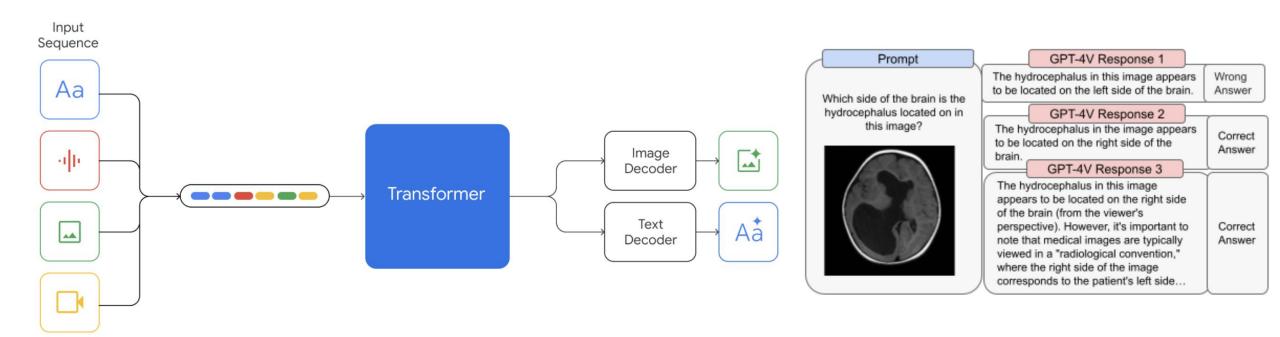




Objec	tive Overall	Subjective Overall	Language	Knowled	dge Reas	son Math	Со	
	Model	¥	Release	Ту	/pe ▼ Pai	rameters	Averaç	ge
100	GPT-4-Turbo-:		2024/4/9 updated: 2024/	(Chat N/A	A	63.1	
2	GPT-4-Turbo-'		2023/11/6 updated: 2024/	1/29	Chat N/A	A	62	
3	Claude3-Opus Close Source · A		2024/3/4 updated: 2024/	4/2	Chat N/A	A	60.5	
4	GLM-4 Close Source · Z	hipu Al	2024/1/16 updated: 2024/	4/2	Chat N/A	A	57.8	
5Ope	abab6.5 Close Source · M	liniMax	2024/4/17 updated: 2024/	(Chat N/A	A	57.8	
6	Llama3-70B-Ir Open Source · M		2024/4/18 updated: 2024/	5/9	Chat 70	В	57	
7	Qwen1.5-110B-		2024/4/25 updated: 2024/	5/9	Chat 72	В	56.8	

Objec	tive Overall	Subjective Overall	Language	Knowledge	Reason	Math	Co ··
	Model	¥	Release	Type T	Paramet	ers	Average
10pc	GPT-4-Turbo- Close Source · C		2023/11/6 updated: 2024/1	Cliat	N/A		50 Open
2	Qwen-Max-04		2024/3/26 updated: 2024/4	Chat	N/A		50
3	GPT-4-Turbo- Close Source · C		2024/4/9 updated: 2024/5	Chat	N/A		49.9
4	Claude3-Opus Close Source · A		2024/3/4 updated: 2024/4	Chat	N/A		48.1
50pe	Spark-v3.5 Close Source · If	flytek	2024/1/30 updated: 2024/5	Clidt	N/A		48.1 pen
6	Qwen1.5-110B Open Source · A		2024/4/25 updated: 2024/5	Chat	Chat 72B		47.4
7	ERNIE-4.0-8K-		2024/3/29 updated: 2024/5	Chat	N/A		46.6

☐ More and more LLMs have shown powerful capabilities

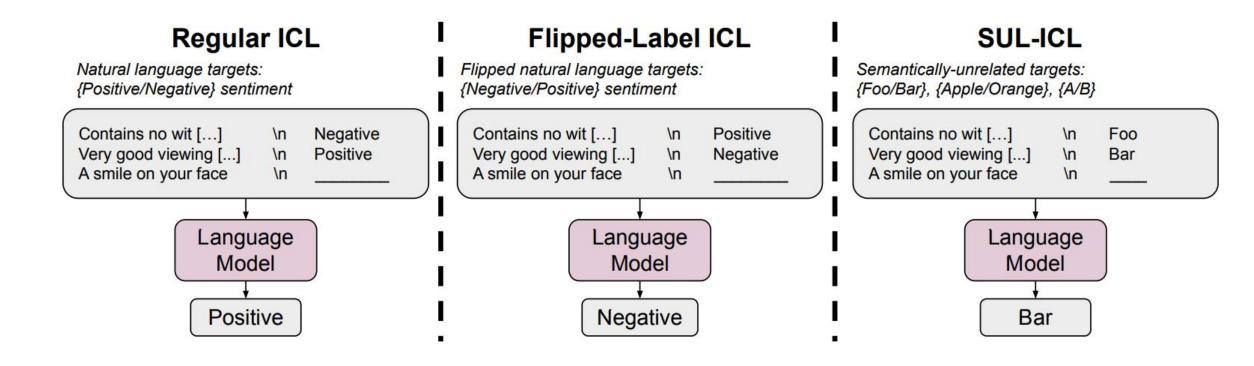


☐ Multi-model to Multi-model unified model is now developing at a rapid pace.

- ☐ Emergent abilities of LLM
 - ☐ Sufficient world knowledge
 - □ Chatting
 - ☐ Incontext Learning & Instruction Following
 - ☐ Reasoning & Planning
 - ☐ Tool using
 - ☐ LLM as an Agent

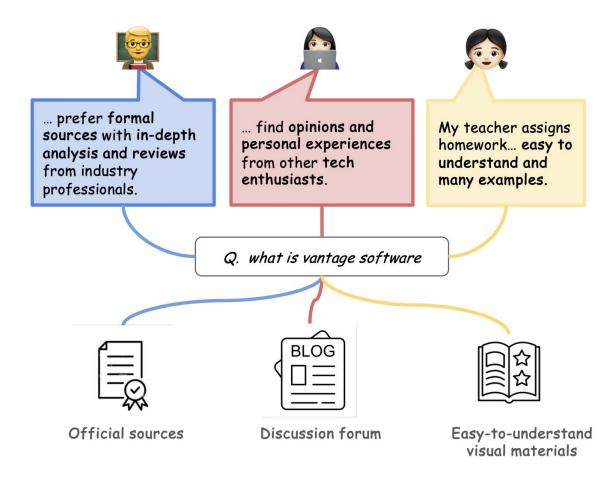
Augmented capabilities of LLMs | Table | Ta

- ☐ In-context Learning
 - Following their example to overide the semantic prior



Augmented capabilities of LLMs | Table | Ta

☐ Instruction following



Augmented capabilities of LLMs Title +++

☐ Reasoning & Planning

☐ LLM can decompose the problem into simple sub-problems to improve their ability

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

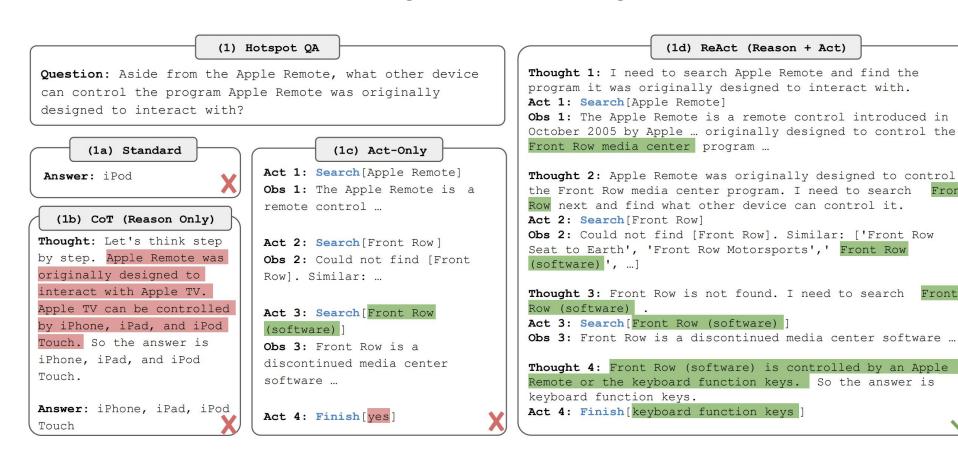
Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Augmented capabilities of LLMs | Table | Ta

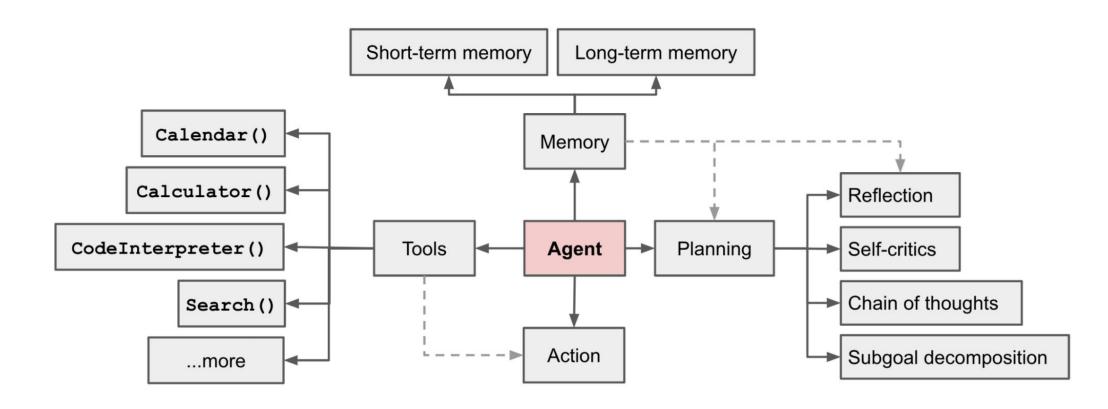
☐ Reasoning & Planning

□ LLM can break down the targe task according to the environment and develop a



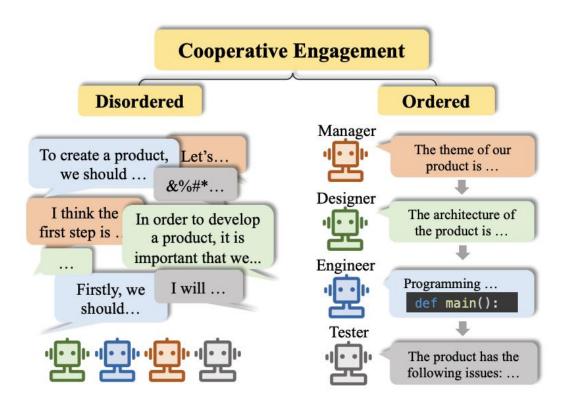
Augmented capabilities of LLMs

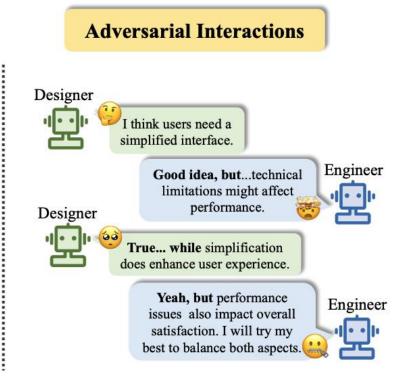
☐ LLM as an Agent



Multi-Agent

- **☐** Multi-Agent
 - ☐ Group intelligence surpasses individual intelligence
 - ☐ Cooperative for complementary / Adversarial for advancement





LLMs for Recommendation

☐ How recommender systems benefit from LLMs

Representation:

Textual feature,
item representation,
knowledge representation

Interaction:

Acquire user information needs via dialog (**chat**)

Generalization:

cross-domain, knowledge compositional-generalization

Generation:

Personalized content generation, explanation generation

- Learning paradigm: Pretrain-finetune, Instruction-tuning, Preference-alignment
- Model architecture: Transformer , Self-attention,

LLMs for Recommendation

- ☐ Key Challenge
 - ☐ Mismatch between pretraining objective and recommendation
 - ☐ Tend to rely on semantics, and another important aspect of

recommendation tasks is collaborative information.

Outline

- Introduction
- Background: LM & LM4Rec
- The progress of LLM4Rec
 - Development of LLMs
 - LLMs for Recommendation
 - ICL
 - Tuning
 - Agent
- Open Problems
- Conclusions

Progress of LLM4Rec

Three dimensions:

Metrics

From accuracy to trustworthiness such as privacy, fairness, etc.

Information modalities

From the text modality to multiple modalities

How to utilize LLMs

In—context learning

Tuning

Agent

Progress of LLM4Rec

Three dimensions:

Metrics

From accuracy to trustworthiness such as privacy, fairness, etc.

Information modalities

From the text modality to multiple modalities

How to utilize LLMs

In—context learning

Tuning

Agent

In-context learning

- LLMs has rich world knowledge, wonderful abilities like reasoning, instruction following, in-context learning.
- The LLMs itself could be leveraged for recommendation by in context learning.
- Existing works on in-context learning:
 - Ask LLM for recommendation
 - Serving as knowledge augmentation for traditional recsys
 - Optimize the prompt used for recommendation
 - Directly used for conversational recommender system

☐ In-context learning: directly ask LLMs for recommendation

Prompt construction

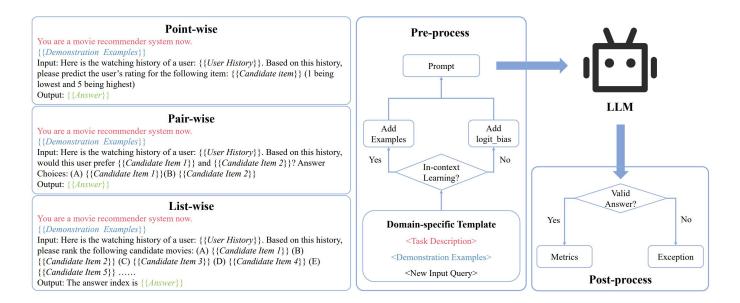


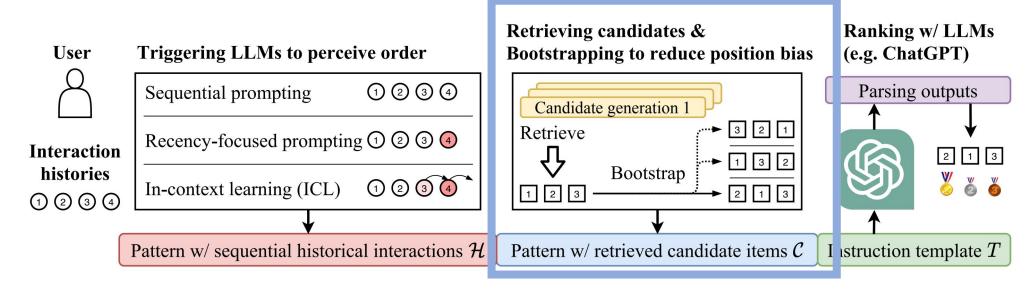
Figure 1: The overall evaluation framework of LLMs for recommendation. The left part demonstrates examples of how prompts are constructed to elicit each of the three ranking capabilities. The right part outlines the process of employing LLMs to perform different ranking tasks and conduct evaluations.

Three different ways of measuring ranking abilities:

$$\begin{split} \hat{y}_i' &= LLM_{\text{point}} \left(I, \mathcal{D}, f(\mathbf{h'}, \mathbf{c'} \mid u) \right) \\ \hat{y}_{i_m > i_n}' &= LLM_{\text{pair}} \left(I, \mathcal{D}, f(\mathbf{h'}, \mathbf{c'} \mid u) \right) \\ \hat{y}_{i_1}', \hat{y}_{i_2}', \cdots, \hat{y}_{i_k}' &= LLM_{\text{list}} \left(I, \mathcal{D}, f(\mathbf{h'}, \mathbf{c'} \mid u) \right) \end{split}$$

ICL: LLMRank

- ☐ In-context learning: re-ranking given candidated items
 - **□** Task formulation:
 - Using historical interaction to rank items retrieved by exsiting recsys.
 - Input: language instructions created with historical interactions and candidate items
 - Output: ranking of the candidate items



ICL: LLMRank

- □ In-context learning: ranking given candidated items
 - ☐ Tree types of prompts:

Park', "

- Sequential prompting: describing History using language
 "I've watched the following movies in the past in order: '0. Multiplicity', '1. Jurassic
- Recency-focused prompting: emphasize most recent interactions
 "I've watched the following movies in the past in order: '0. Multiplicity', '1. Jurassic Park', Note that my most recently watched movie is Dead Presidents. . . ."
- In-context learning (ICL): providing recommendation example

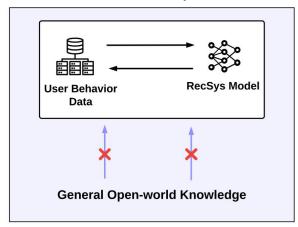
 "If I've watched the following movies in the past in order: '0. Multiplicity', '1.

 Jurassic Park', . . ., then you should recommend Dead Presidents to me and now that I've watched Dead Presidents, then . . ."

ICL: KAR

- ☐ In-context learning: knowledge enhancement
 - □ Traditional RecSys vs ICL-based RecSys

Traditional RecSys



Inference fast but being colsed system, generating recommendations relying on local dataset

Directly ask LLMs for recommendaiton

Given the user's historical interactions, please determine whether the user will enjoy the target new movie by answering "Yes" or "No".

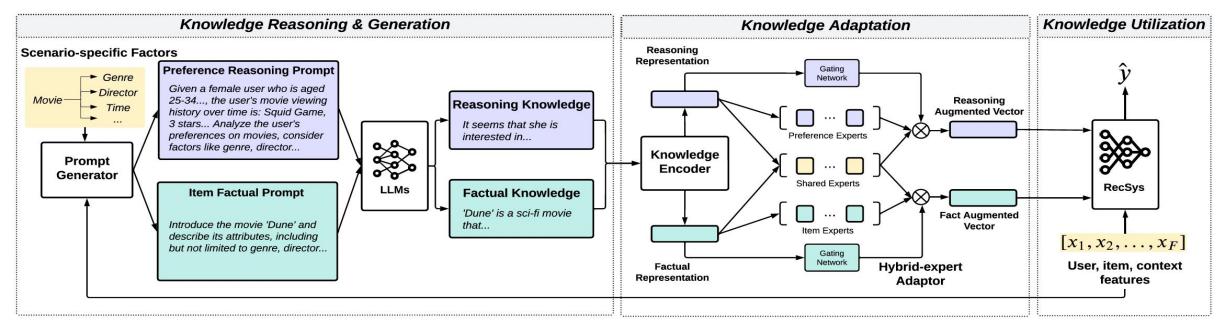
Could leverage open-world knowledge, but:

- 1) not trained on specific recommendation task
- 2) Inference slowly
- 3) hard to correctly answer compoitional questions

Extract and inject LLM's world knowledge into traditional recommender system

ICL: KAR

☐ In-context learning: knowledge enhancement



Obtain knowledge beyond local rec dataset:

- 1) Generate reasoning knowledge on user preference (factors affect preference)
- 2) Generate factual knowledge about items

Knowledge Adaptation Stage

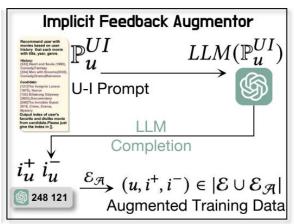
encode the textual knowledge and maping it into recommendation space

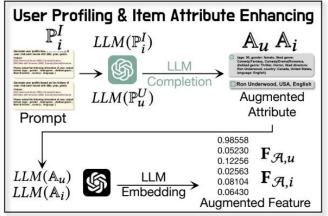
Knowledge Utilization

Use the knowledge obtained from LLMs as additional features

ICL: LLM4Rec

☐ ICL knowledge enhancement for Graph-based Recommendation





1) Augmenting user—item interactions 2) Enhancing item attributes

3) User profiling

Recommend user with movies based on user history that each movie with title, year, genre.

History:

[332] Heart and Souls (1993), Comedy|Fantasy [364] Men with Brooms(2002), Comedy|Drama|Romance

Candidate:

[121]The Vampire Lovers (1970), Horror [155] Billabong Odyssey (2003),Documentary [248]The Invisible Guest 2016, Crime, Drama, Mystery

Output index of user's favorite and dislike movie from candidate.Please just give the index in [].

- **⑤** 248 121
- (a) Implicit Feedback

Generate user profile based on the history of user, that each movie with title, year, genre.

History:

[332] Heart and Souls (1993), Comedy|Fantasy [364] Men with Brooms (2002), Comedy|Drama|Romance

Please output the following infomation of user, output format: {age: , gender: , liked genre: , disliked genre: , liked directors: , country: , language: }

- {age: 50, gender: female, liked genre: Comedy|Fantasy, Comedy|Drama|Romance, disliked genre: Thriller, Horror, liked directors: Ron Underwood, country: Canada, United States, language: English}
 - (b) User Profile

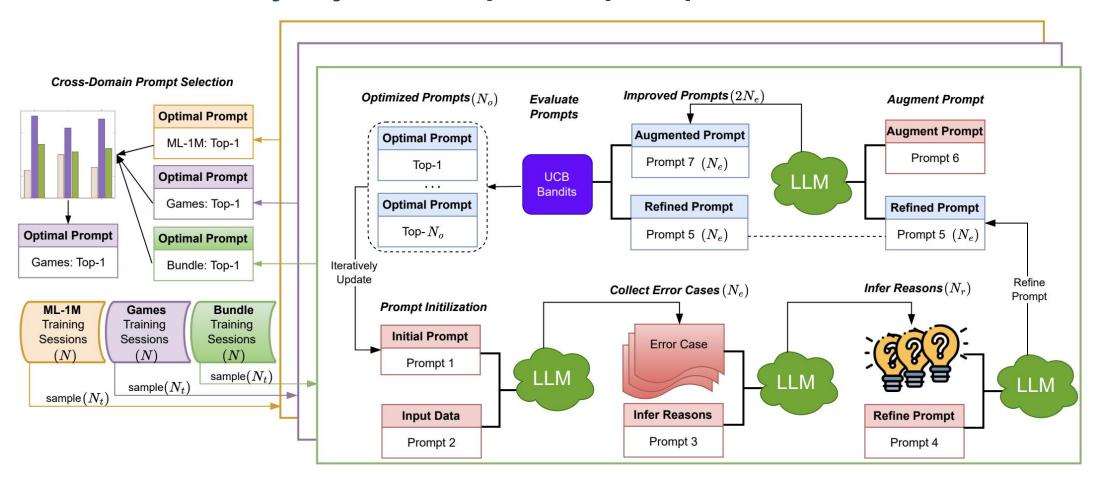
Provide the inquired information of the given movie. [332] Heart and Souls (1993), Comedy|Fantasy

The inquired information is: director, country, language. And please output them in form of: director, country, language

- Ron Underwood, USA, English
 - (c) Item Attribute

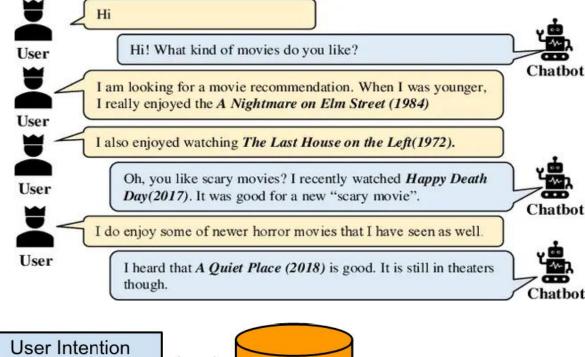
ICL: PO4SIR

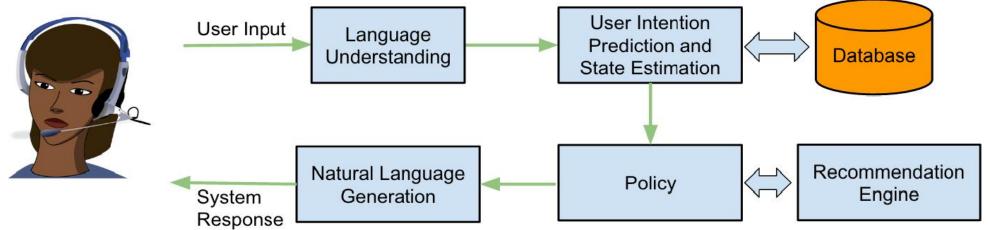
☐ ICL: Automaticaly adjust and optimize prompts for recommendation



ICL: KECRS

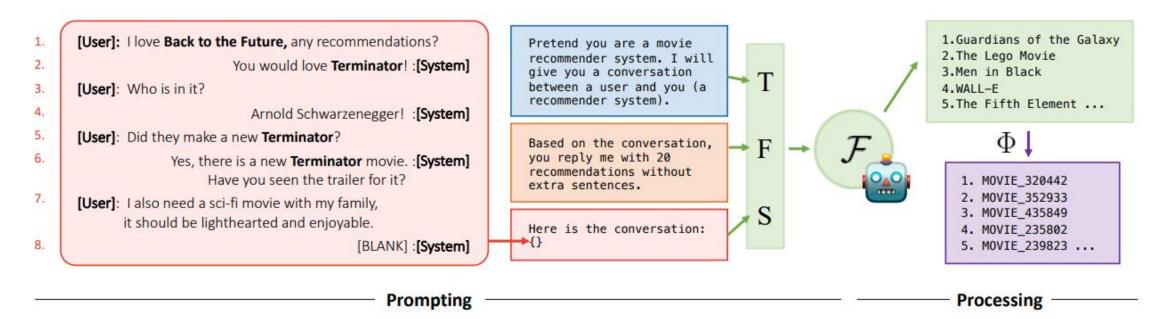
- ICL for conversational recommender system
- Users chat with chatbot with natural language
- Chatbot analyses user interest
- Chatbot provide recommendaiton





ICL: LLMCRS

Framework



ICL for conversational recommender system

- \triangleright Input: task description T, format requirement Fand conversation context S
- LLMs analys the input data
- > LLMs generate the recommendation list

Progress of LLM4Rec

Three dimensions:

Metrics

From accuracy to trustworthiness such as privacy, fairness, etc.

Information modalities

From the text modality to multiple modalities

How to utilize LLMs

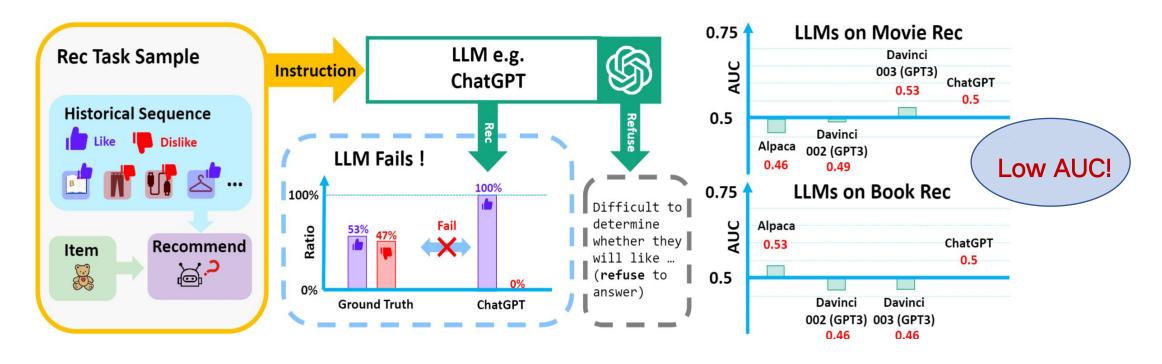
In—context learning

Tuning

Agent

Tuning LLM4Rec

- ☐ In-context learning is not enough.
- In complex scenarios, ChatGPT usually gives positive ratings or refuse to answer.



Need to align LLM with recommendation task!

Tuning LLM4Rec

Motivation: lack of recommendation task tuning in LLM pre-training

> tune LLMs with the recommendation data to align with the recommendation

Exailsting work on tuning LLMs for recommendation:

Discriminative manner

Following traditional rec task,

provide candidates:

pointwise, pairwise, listwise

PEFT tuning
TALLRec [1]
LLM—TRSR [5]
LLamaRec [4]
GLRec[8]

Full tuning
InstructRec[2]
LLMunderPre[3]

Generative manner

Following the pretraining task,
do not provide candidates:
directly generate items

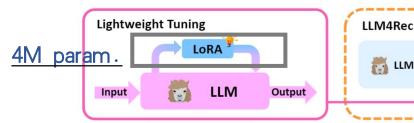
BigRec [6]
TransRec [7]
LC—Rec [10]
GIRL[9]

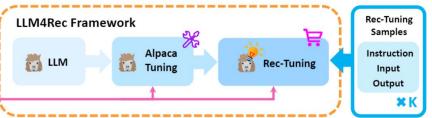
- [1] Bao et al. Recsys, TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. 2023
- [2] Zhang et al. Recommendation as instruction following: a large language model empowered recommendation approach. 2023.
- [3] Kang el al. Do LLMs Understand User Preferences? Evaluating LLMs on User Rating Prediction. 2023.
- [4] Yue et al. LlamaRec: Two-Stage Recommendation using Large Language Models for Ranking. 2023.
- [5] Zhi Zheng et al. Harnessing Large Language Models for Text-Rich Sequential Recommendation. 2024

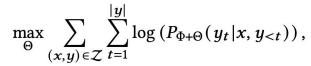
- [6] Bao et al. A Bi-step Grounding Paradigm for Large Language Models in Recommender system. 2023.
- [7] Lin et al. A Multi-facet Paradigm to Bridge Large Language Model and Recommendation. 2023.
- [8] Wu et al. Exploring Large Language Model for Graph Data Understanding in online Job Recommendation. 2023
- [9] Zheng et al. Generative job recommendations with large language mode. 2023.
- [10] Bowen Zheng et al. "Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation" ICDE 2024.

Tuning LLM4Rec: TALLRec

□ TALLRec: Instruction-tuning

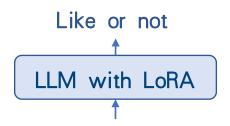






- Fine—tune 4M parameters by few—shot samples via the generative loss
- Quickly adapt to new tasks

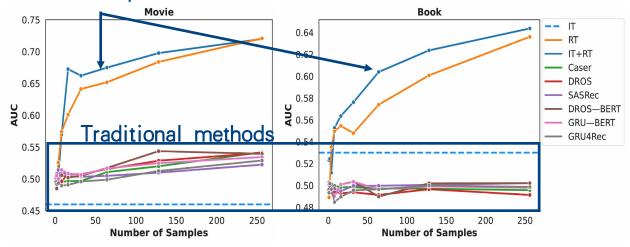
7B LLAMA



User features + item features

- Use item titles as the input
- Better for cold—start recommendation

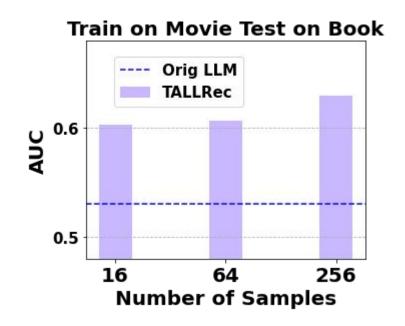
Performance significantly improves by fine—tuning few—shot samples.

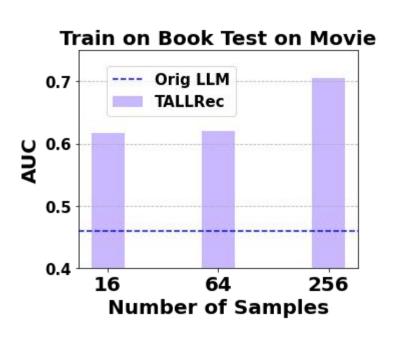


Tuning LLM4Rec: TALLRec

☐ TALLRec: Cross-domain generalization

- Learning from movie scenario can directly recommend on books, and vice versa
- LLM can leverage domain knowledge to accomplish recommendation tasks after acquiring the ability to recommend.

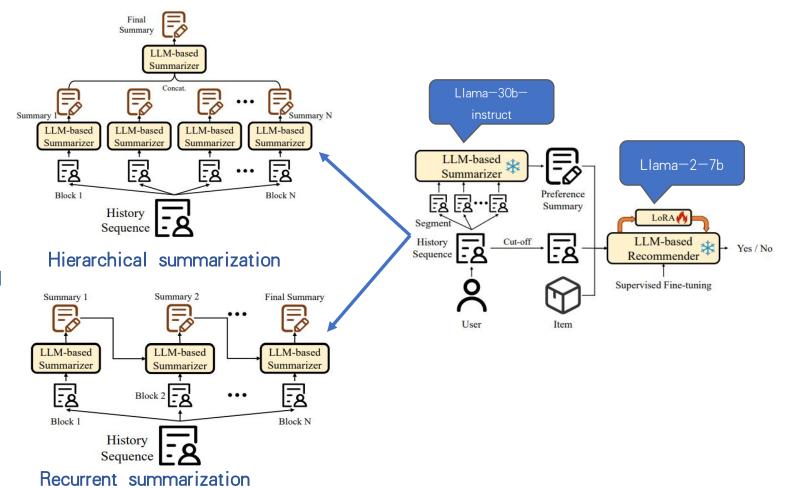




Tuning LLM4Rec: LLM-TRSR

☐ Text-Rich Sequential Recommendation

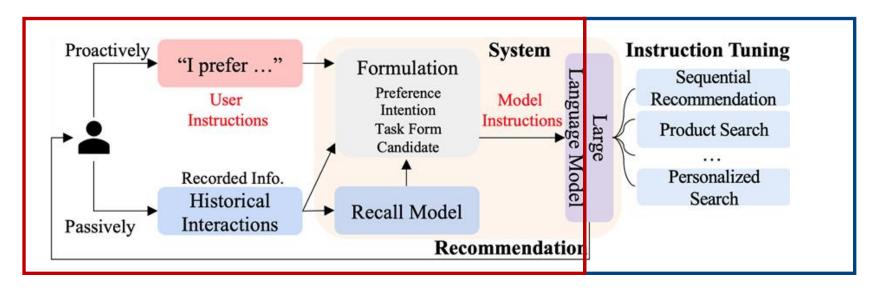
- LLM for preference summary
 - Hierarchical summarization
 - Recurrent summarization
- Supervised fine—tuning
 - Given user preference summary, recently interacted items, and candidate items, LLMs are tuned for recommendation



Tuning LLM4Rec: InstructRec

☐ InstructRec

- User could express their needs diversely: vague or specific; implicit or explicit
- LLM should understand and follow different instructions for recommendation.



Recommendation instruction construction

Instruction tuning: tuning LLMs with the instruction data

Tuning LLM4Rec: InstructRec

- ☐ InstructRec: Instruction construction:
- Format: Preference: none/implicit/explicit Intention: none/vague/specific task: pointwise/pairwise/listwise

Instantiation	Model Instructions
$\langle P_1, I_0, T_0 \rangle$	The user has purchased these items: <a href="https://www.new.new.new.new.new.new.new.new.new.</th></tr><tr><td><math>\langle P_2, I_0, T_3 \rangle</math></td><td>You are a search engine and you meet a user's query: <explicit preference> . Please respond to this user by selecting items from the candidates: <candidate items></td></tr><tr><td><math>\langle P_0, I_1, T_2 \rangle</math></td><td>As a recommender system, your task is to recommend an item that is related to the user's <vague intention> . Please provide your recommendation.</td></tr><tr><td><math>\langle P_0, I_2, T_2 \rangle</math></td><td>Suppose you are a search engine, now the user search that <specific Intention>, can you generate the item to respond to user's query?</td></tr><tr><td><math>\langle P_1, P_2, T_2 \rangle</math></td><td>Here is the historical interactions of a user: <a href=" https:="" td="" www.new.new.new.new.new.new.new.new.new.<="">
$\langle P_1, I_1, T_2 \rangle$	The user has interacted with the following historical interactions . Now the user search for <vague a="" intention<="">, please generate products that match his interactions</vague>
$\langle P_1, I_2, T_2 \rangle$	The user has recently purchased the following historical items . The user has expressed a desire for specific intention . Please provide recommendations.

• Instruction generation: #1 using ChatGPT to generate user preferences and intentions based on interactions

Interaction

Let the second of the second of

[Raw Behavior Sequence]:

"1. Resident Evil: Revelations 2 - PS 4

→ 2. Resident Evil 4 - PS 4."

[Generated Explicit Preference]:

"He prefers horror-based games with a strong narrative."

[Raw Target Review]:

"My son loves ... of the game. I'm
happy I bought this for him."

[Generated Vague Intention]:

"I enjoy buying games for my son that
he enjoys."

review

vague intention

#2 Increasing the instruction diversity via multiple strategies such as CoT

Tuning LLM4Rec: InstructRec

InstructRec

- Instruction construction
 - Quality: human evaluation

Statistic	
# of fine-grained instructions	252,730
- # of user-described preferences	151,638
- # of user intention in decision making	101,092
ave. instruction length (in words)	23.5
# of coarse-grained instructions	39
- # of preferences related instructions	17
- # of intentions related instructions	9
- # of combined instructions	13
ave. instruction length (in words)	41.4

Quality Review Question	Preference	Intention
Is the instruction generated from the user's related information?	93%	90%
Does the teacher-LLM provide related world knowledge?	87%	22%
Does the instruction reflect the user's preference/ intention?	88%	69%
Is the instruction related to target item?	48%	69%

- Instruction tuning:
 - Supervised fine—tuning, tuning all model parameters (3B Flan—T5—XL)

$$\mathcal{L} = \sum_{k=1}^{B} \sum_{j=1}^{|Y_k|} \log P\left(Y_{k,j} \mid Y_{k,< j}, I_k\right), \tag{1}$$

where Y_k is the desired system responses for the k-th instance, I_k is the instruction of the k-th instance, and B is the batch size.

Tuning LLM4Rec

Motivation: lack of recommendation task tuning in LLM pre-training

> tune LLMs with the recommendation data to align with the recommendation

Exailsting work on tuning LLMs for recommendation:

Discriminative manner

Following traditional rec task,

provide candidates:

pointwise, pairwise, listwise

PEFT tuning

TALLRec [1]

LLM-TRSR [5]

LLamaRec [4]

GLRec[8]

Full tuning

InstructRec[2]

LLMunderPre[3]

.

Generative manner

Following the pretraining task, do not provide candidates:

directly generate items

BigRec [6]

TransRec [7]

LC-Rec [10]

GIRL[9]

[6] Bao et al. A Bi-step Grounding Paradigm for Large Language Models in Recommender system. 2023.

[10] Bowen Zheng et al. "Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation" ICDE 2024.

^[1] Bao et al. Recsys, TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. 2023

^[2] Zhang et al. Recommendation as instruction following: a large language model empowered recommendation approach. 2023.

^[3] Kang el al. Do LLMs Understand User Preferences? Evaluating LLMs on User Rating Prediction. 2023.

^[4] Yue et al. LlamaRec: Two-Stage Recommendation using Large Language Models for Ranking. 2023.

^[5] Zhi Zheng et al. Harnessing Large Language Models for Text-Rich Sequential Recommendation. 2024

^[7] Lin et al. A Multi-facet Paradigm to Bridge Large Language Model and Recommendation. 2023.

^[8] Wu et al. Exploring Large Language Model for Graph Data Understanding in online Job Recommendation. 2023

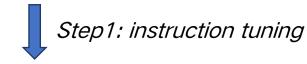
^[9] Zheng et al. Generative job recommendations with large language mode. 2023.

□ BIGRec

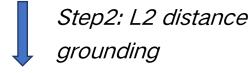
- Generation + Grounding
 - Given user interaction history in natural language, LLMs aim to generate the next item as recommendation.
 - However, LLMs do not know how to represent an item via token sequence in the recommendation scenario.
 - Besides, the item generated by the LLM may not exist in the actual world.

Grounding Paradigm

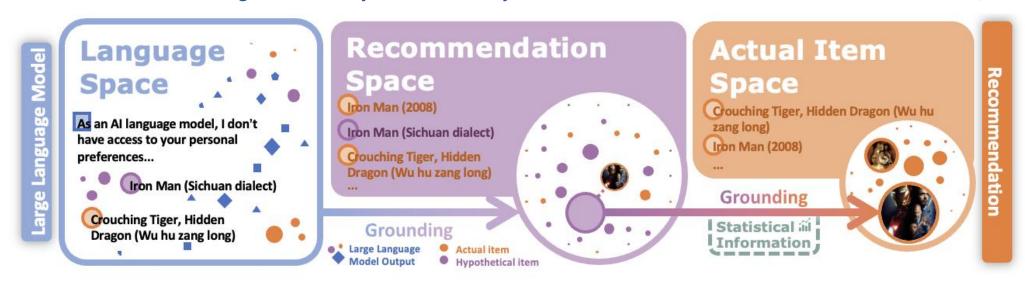
Language Space



Recommendation Space



Actual Item Space



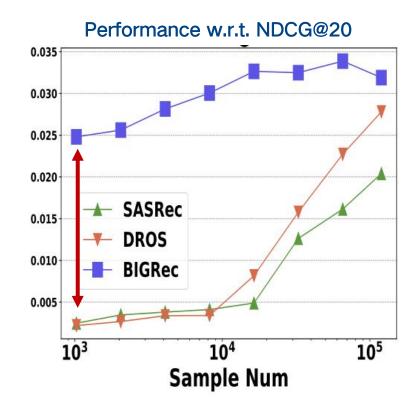
□ BIGRec

Few-shot tuning

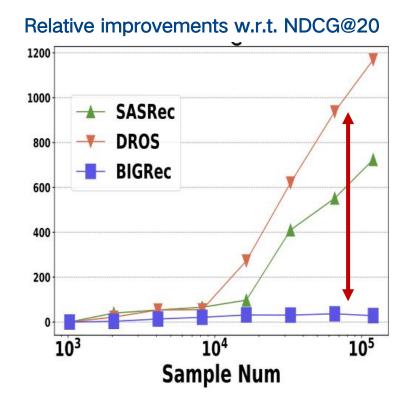
Dataset	Model	NG@1	NG@3	NG@5	NG@10	NG@20	HR@1	HR@3	HR@5	HR@10	HR@20
Movie	GRU4Rec	0.0015	0.0034	0.0047	0.0070	0.0104	0.0015	0.0047	0.0079	0.0147	0.0281
	Caser	0.0020	0.0035	0.0052	0.0078	0.0109	0.0020	0.0046	0.0088	0.0171	0.0293
	SASRec	0.0023	0.0051	0.0062	0.0082	0.0117	0.0023	0.0070	0.0097	0.0161	0.0301
	P5	0.0014	0.0026	0.0036	0.0051	0.0069	0.0014	0.0035	0.0059	0.0107	0.0176
Movie	DROS	0.0022	0.0040	0.0052	0.0081	0.0112	0.0022	0.0051	0.0081	0.0173	0.0297
	GPT4Rec-LLaMA	0.0016	0.0022	0.0024	0.0028	0.0035	0.0016	0.0026	0.0030	0.0044	0.0074
	BIGRec (1024)	0.0176	0.0214	0.0230	0.0257	0.0283	0.0176	0.0241	0.0281	0.0366	0.0471
	Improve	654.29%	323.31%	273.70%	213.71%	142.55%	654.29%	244.71%	188.39%	111.97%	56.55%
	GRU4Rec	0.0013	0.0016	0.0018	0.0024	0.0030	0.0013	0.0018	0.0024	0.0041	0.0069
	Caser	0.0007	0.0012	0.0019	0.0024	0.0035	0.0007	0.0016	0.0032	0.0048	0.0092
	SASRec	0.0009	0.0012	0.0015	0.0020	0.0025	0.0009	0.0015	0.0021	0.0037	0.0057
	P5	0.0002	0.0005	0.0007	0.0010	0.0017	0.0002	0.0007	0.0012	0.0023	0.0049
Game	DROS	0.0006	0.0011	0.0013	0.0016	0.0022	0.0006	0.0015	0.0019	0.0027	0.0052
	GPT4Rec-LLaMA	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0002	0.0002
	BIGRec (1024)	0.0133	0.0169	0.0189	0.0216	0.0248	0.0133	0.0195	0.0243	0.0329	0.0457
	Improve	952.63%	976.26%	888.19%	799.64%	613.76%	952.63%	985.19%	660.42%	586.11%	397.10%

- BIGRec significantly surpasses baselines by few—shot tuning.
- Improvement of BIGRec is significantly higher on Game compared to on Movie.
 - possibly due to the varying properties of popularity bias between the two datasets.

□ BIGRec



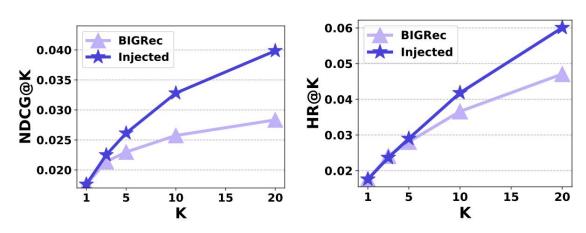
Quickly adapt to recommendation!



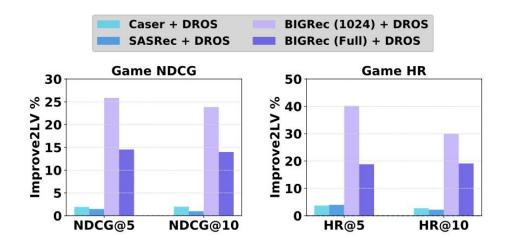
Not proficient in utilizing collaborative filtering signals in interactions!

□ BIGRec

Injecting statistical information into BIGRec at Step 2: L2 distance grounding



 By incorporating popularity, BIGRec achieves significant improvements w.r.t. NDCG@K and HR@K, particularly for a larger K.

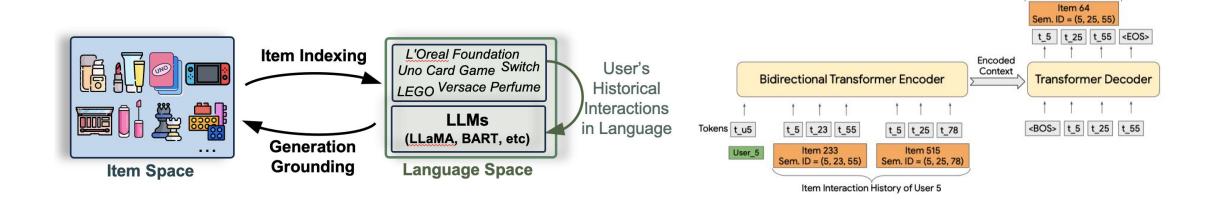


Incorporating collaborative information into BIGRec yields more significant enhancements than conventional models.

Tuning LLM4Rec

Next Item

□ LLM for generative recommendation

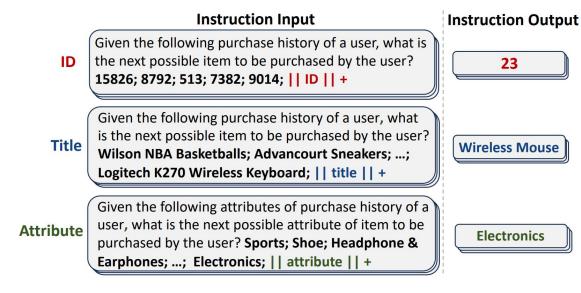


- Two key problems of LLM4Rec
 - Item tokenization: index items into language space
 - Item generation: generate items as recommendations

Tuning LLM4Rec: TransRec

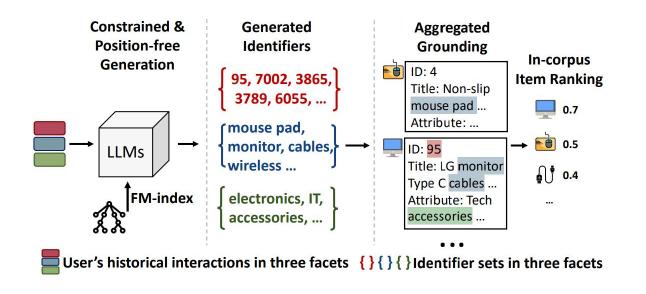
Item indexing: multi-facet identifier

Instruction data reconstruction



- Generation grounding:
 - Position-free constrained generation

FM-index: special prefix tree that supports search from any position of the identifier corpus.



Tuning LLM4Rec: TransRec

■ Strong generalization ability

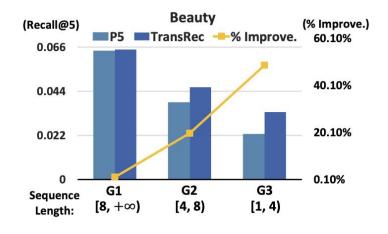
- Item group analysis
 - From warm to cold items

		Wa	ırm	Cold			
N-shot	Model	R@5	N@5	R@5	N@5		
	LightGCN	0.0205	0.0125	0.0005	0.0003		
	ACVAE	0.0098	0.0057	0.0047	0.0026		
1024	P5	0.0040	0.0016	0.0025	0.0015		
	TransRec-B	0.0039	0.0024	0.0025	0.0016		
	TransRec-L	0.0141	0.0070	0.0159	0.0097		
	LightGCN	0.0186	0.0117	0.0005	0.0004		
	ACVAE	0.0229	0.0136	0.0074	0.0044		
2048	P5	0.0047	0.0030	0.0036	0.0012		
	TransRec-B	0.0052	0.0027	0.0039	0.0017		
	TransRec-L	0.0194	0.0126	0.0206	0.0126		

^{*} The bold results highlight the superior performance compared to the best LLM-based recommender baseline.

User group analysis

From dense users to sparse users



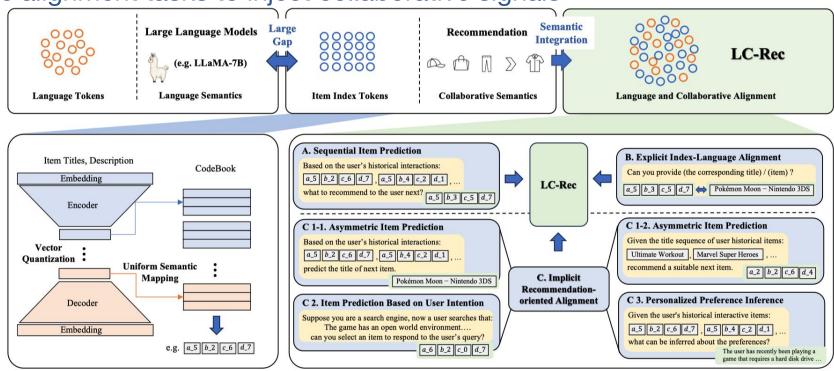
- On the item side, TransRec-L with LLMs has remarkable generalization ability with vase knowledge base, especially on cold-start recommendation under limited data.
- On the user side, TransRec significantly improves the performance of sparse users with fewer interactions.

Tuning LLM4Rec: LC-Rec

LC-Rec

• Item indexing: utilize Residual-Quantized Variational AutoEncoder (RQ-VAE) to encode item semantic information as identifiers.

Multiple alignment tasks to inject collaborative signals



Progress of LLM4Rec

Three dimensions:

Metrics

From accuracy to trustworthiness such as privacy, fairness, etc.

Information modalities

From the text modality to multiple modalities

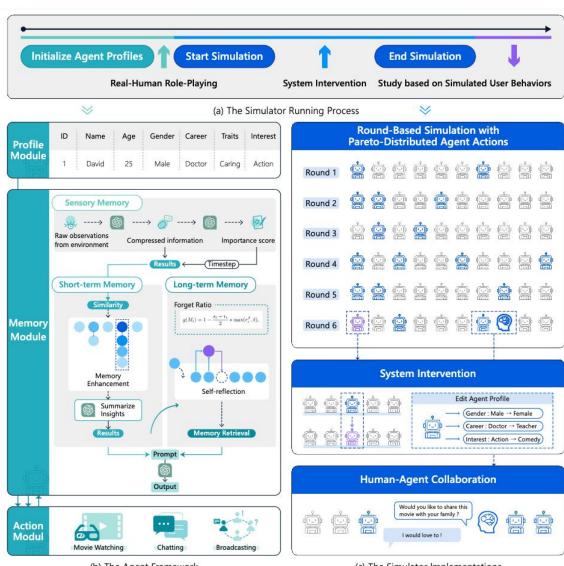
How to utilize LLMs
In—context learning
Tuning
Agent

Agent for Recommendation

- □ LLM-empowered Agents for Recommendation
 - Agent as User Simulator
 - Main idea: using agents to simulate user behavior for real-world recommendation.
 - RecAgent^[1], Agent4Rec^[2]
 - □ Agent for Recommendation
 - Main idea: harnessing the powerful capabilities of LLMs, such as reasoning, reflection, planning and tool usage, for recommendation.
 - RecMind^[3], InteRecAgent^[4], BiLLP^[5], Multi-Agent Collaboration^[6]
- [1] Lei Wang et al. "When Large Language Model based Agent Meets User Behavior Analysis: A Novel User Simulation Paradigm" arXiv 2023.
- [2] Zhang An et al. "On Generative Agents in Recommendation" arXiv 2023.
- [3] Wang Yancheng et al. "RecMind: Large Language Model Powered Agent For Recommendation" arXiv 2023.
- [4] Xu Huang et al. "Recommender Al Agent: Integrating Large Language Models for Interactive Recommendations" arxiv 2023.
- [5] Wentao Shi et al. 2023. Large Language Models are Learnable Planners for Long-Term Recommendation. in SIGIR 2024.
- [6] Jiabao Fang et al. A Multi-Agent Conversational Recommender System. Arxiv 2024

Agent: RecAgent

- ☐ LLM-based agent for user simulation
 - User simulation is a fundamental problem in human-centered applications.
 - Traditional methods struggle to simulate complex user behaviors.
 - LLMs show potential in human-level intelligence and generalization capabilities.



(c) The Simulator Implementations

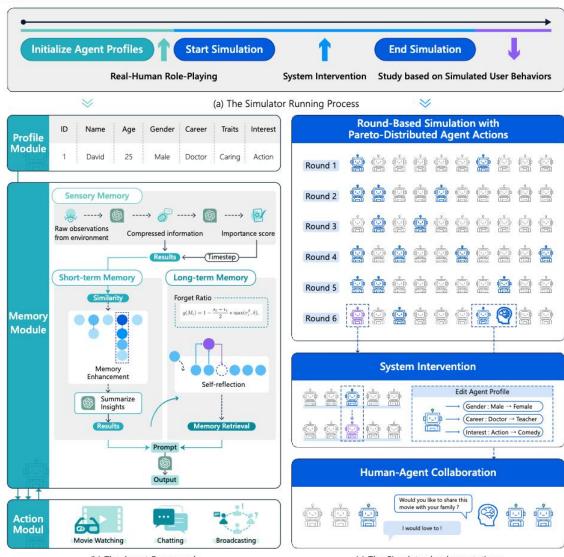
Agent: RecAgent

- □ Recommendation Behaviors
 - Agent chooses to **search or receive recommendations**, selects movies, and **stores** feelings after watching.
- Chatting Behaviors

Two agents **discuss and stored** the conversation in their memories.

Broadcasting Behaviors

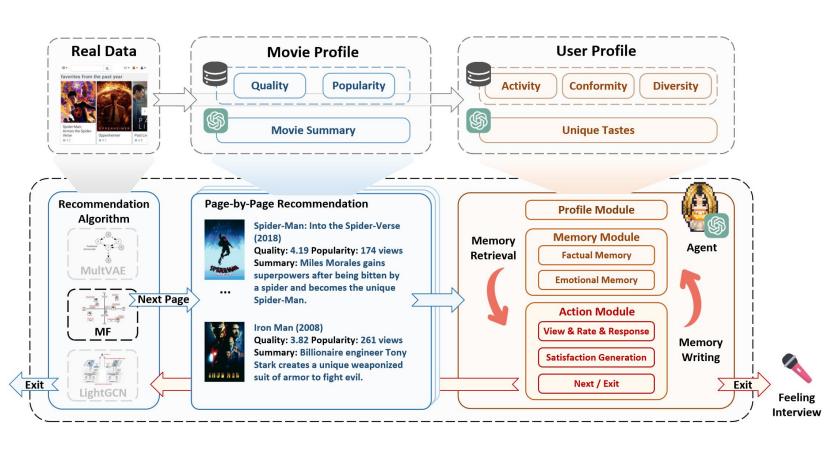
An agent **posts** a message on social media, **received by friends** and stored in their memories.



(c) The Simulator Implementations

Agent: Agent4Rec

- Agent4Rec, a simulator with 1,000 LLM-empowered generative agents.
- Agents are trained by the MovieLens-1M dataset, embodying varied social traits and preferences.
- Each agent interacts with personalized movie recommendations in a page-bypage manner and undertakes various actions such as watching, rating, evaluating, exiting, and



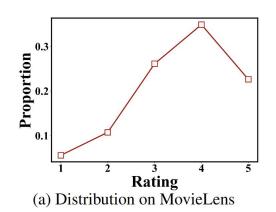
Agent: Agent4Rec

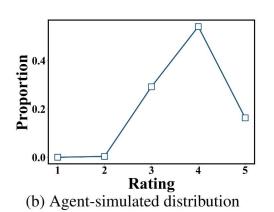
- ☐ To what extent can LLM-empowered generative agents truly simulate the behavior of genuine, independent humans in recommender systems?
- **☐** User Taste Alignment

Table 1: User taste discrimination.

1:m	Accuracy	Recall	Precision	F1 Score
1:1	0.6912*	0.7460	0.6914*	0.6982*
1:2	0.6466	0.7602	0.5058	0.5874
1:3	0.6675	0.7623	0.4562	0.5433
1:9	0.6175	0.7753*	0.2139	0.3232

☐ Rating Distribution Alignment



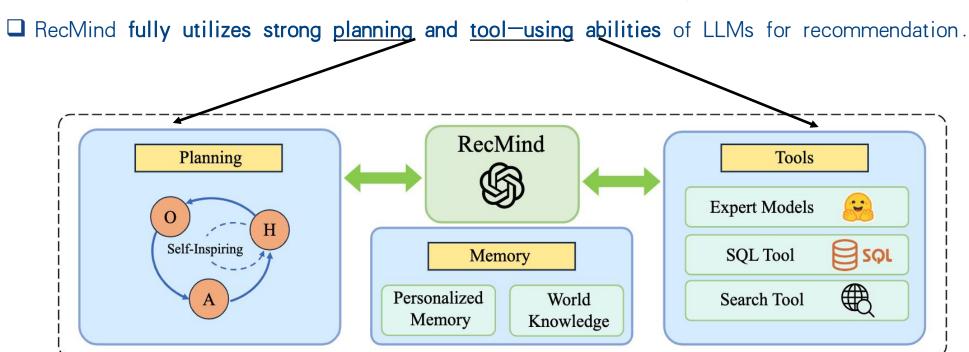


Agent for Recommendation

- □ LLM-empowered Agents for Recommendation
 - Agent as User Simulator
 - Main idea: using agents to simulate user behavior for real-world recommendation.
 - RecAgent^[1], Agent4Rec^[2]
 - Agent for Recommendation
 - Main idea: harnessing the powerful capabilities of LLMs, such as reasoning, reflection, planning and tool usage, for recommendation.
 - RecMind^[3], InteRecAgent^[4], BiLLP^[5], Multi-Agent Collaboration^[6]
- [1] Lei Wang et al. "When Large Language Model based Agent Meets User Behavior Analysis: A Novel User Simulation Paradigm" arXiv 2023.
- [2] Zhang An et al. "On Generative Agents in Recommendation" arXiv 2023.
- [3] Wang Yancheng et al. "RecMind: Large Language Model Powered Agent For Recommendation" arXiv 2023.
- [4] Xu Huang et al. "Recommender Al Agent: Integrating Large Language Models for Interactive Recommendations" arxiv 2023.
- [5] Wentao Shi et al. 2023. Large Language Models are Learnable Planners for Long-Term Recommendation. in SIGIR 2024.
- [6] Jiabao Fang et al. A Multi-Agent Conversational Recommender System. Arxiv 2024

Agent: RecMind

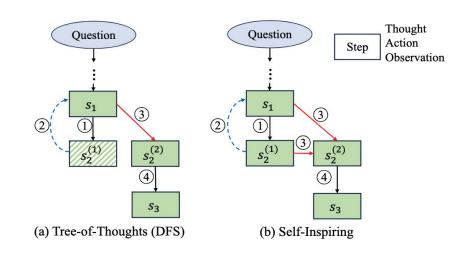
- □ LLM-based agent for recommendation
 - □ Traditional methods train and fine—tune models on task—specific datasets, struggle to leverage external knowledge and lack generalizability across tasks and domains.
 - ☐ Existing LLM4Rec methods primarily rely on internal knowledge in LLM weights.



Agent: RecMind

Planning ability

- To break complex tasks into smaller sub-tasks.
- ☐ Self-inspiring to integrates multiple reasoning paths.



☐ Tool-using ability

- Database tool to access domain-specific knowledge.
- Search tool to access real-time information.
- ☐ Text summarization tool to summarize lengthy texts.

Evaluation

- **Precision-oriented tasks** (rating prediction, direct recommendation, and sequential recommendation).
- **Explainability-oriented tasks** (explanation generation and review summarization).

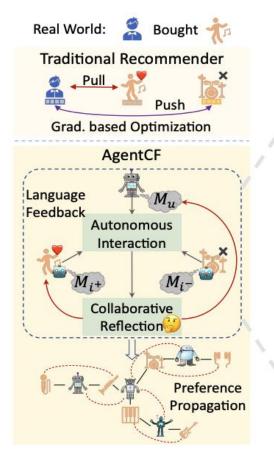
Result

RecMind can achieve performance comparable to the **fully trained P5** model.

Table 3: Performance comparison in sequential recommendation on Amazon Reviews (Beauty) and Yelp.

		1	2027 202 20		9 8	5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	37	10 1 (1)	
Methods		Ве	eauty		Yelp				
	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	
S ³ -Rec	0.0387	0.0244	0.0647	0.0327	0.0201	0.0123	0.0341	0.0168	
SASRec	0.0401	0.0264	0.0643	0.0319	0.0241	0.0175	0.0386	0.0215	
P5 (pre-trained expert,few-shot)	0.0459	0.0347	0.0603	0.0411	0.0565	0.0389	0.0702	0.0441	
ChatGPT (zero-shot)	0.0089	0.0053	0.0103	0.0060	0.0102	0.0062	0.0143	0.0089	
ChatGPT (few-shot)	0.0179	0.0124	0.0256	0.0125	0.0217	0.0116	0.0320	0.0165	
RecMind-CoT (zero-shot)	0.0182	0.0139	0.0297	0.0160	0.0368	0.0239	0.0554	0.0316	
RecMind-CoT (few-shot)	0.0349	0.0187	0.0486	0.0302	0.0427	0.0305	0.0590	0.0380	
RecMind-ToT (BFS, zero-shot)	0.0297	0.0172	0.0368	0.0249	0.0379	0.0251	0.0538	0.0322	
RecMind-ToT (BFS, few-shot)	0.0387	0.0235	0.0522	0.0327	0.0447	0.0319	0.0624	0.0337	
RecMind-ToT (DFS, zero-shot)	0.0299	0.0168	0.0359	0.0241	0.0358	0.0240	0.0519	0.0324	
RecMind-ToT (DFS, few-shot)	0.0365	0.0211	0.0497	0.0355	0.0455	0.0328	0.0622	0.0349	
RecMind-SI (zero-shot)	0.0339	0.0200	0.0469	0.0310	0.0396	0.0281	0.0569	0.0340	
RecMind-SI (few-shot)	0.0415	0.0289	0.0574	0.0375	0.0471	0.0342	0.0635	0.0407	

Agent: AgentCF



Previous Memory

- User Agent Memory: I adore energetic guitar-driven rock, and dance pop music...
- Pos Item Agent Memory: The CD 'Highway to Hell' is classic rock and AOR, radiating raw energy and infectious melodies that captivate fans of classic rock...
- Neg Item Agent Memory: 'The Very Best of Prince' is a Pop and Dance Pop CD, offering a collection of prince's greatest hits for an enjoyable experience...

Autonomous Interaction

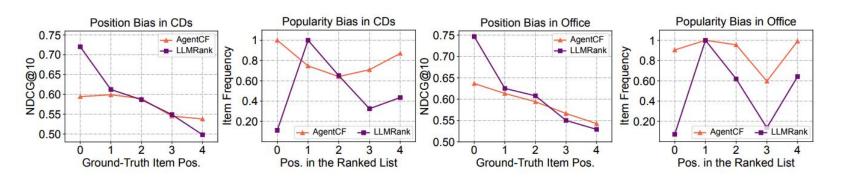
- System Prompt: The first CD is [Memory], the second CD is [Memory]. Please select your preferred CD from these two candidates and provide an explanation.
- User Agent Response: I prefer 'The Very Best of Prince'... This CD resonates with my preference for Pop and Dance Pop CDs...

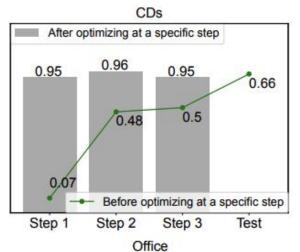
Reflection & Memory Update

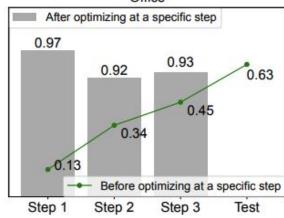
- System Prompt: You find that you don't like the CD that you chose, indicating your preferences have changed. Please update your preferences.
- User Agent Response: I adore energetic guitar-driven rock, classic rock, and AOR. I value classic rock for its raw energy and infectious melodies. I do not like Pop...
- System Prompt: The user finds that he makes a unsuitable choice, possibly due to the misleading information in CDs' features. Please update the description.
- Pos Item Agent Response: 'Highway to Hell' is classic rock and AOR CD, exuding a raw energy and infectious melodies, ideal for energetic guitar-driven enthusiasts...
- ☐ Use Agent to simulate both user/items
- □ Provide a collaborative reflection optimizing mechanism to optimize the user/item agents, and mutual update of user and item memory.

Agent: AgentCF

Mada J		CDs_{sparse}			$CDs_{dense} \\$			Office _{sparse}	e		Office _{dense}	
Method	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10
BPR _{full}	0.1900	0.4902	0.5619	0.3900	0.6784	0.7089	0.1600	0.3548	0.4983	0.5600	0.7218	0.7625
$SASRec_{full}$	0.3300	0.5680	0.6381	0.5800	0.7618	0.7925	0.2500	0.4106	0.5467	0.4700	0.6226	0.6959
BPR _{sample}	0.1300	0.3597	0.4907	0.1300	0.3485	0.4812	0.0100	0.2709	0.4118	0.1200	0.2705	0.4576
SASRec _{sample}	0.1900	0.3948	0.5308	0.1300	0.3151	0.4676	0.0700	0.2775	0.4437	0.3600	0.5027	0.6137
Pop	0.1100	0.2802	0.4562	0.0400	0.1504	0.3743	0.1100	0.2553	0.4413	0.0700	0.2273	0.4137
BM25	0.0800	0.3066	0.4584	0.0600	0.2624	0.4325	0.1200	0.2915	0.4693	0.0600	0.3357	0.4540
LLMRank	0.1367	0.3109	0.4715	0.1333	0.3689	0.4946	0.1750	0.3340	0.4728	0.2067	0.3881	0.4928
AgentCF _B	0.1900	0.3466	0.5019	0.2067	0.4078	0.5328	0.1650	0.3359	0.4781	0.2067	0.4217	0.5335
AgentCF $_{B+R}$	0.2300	0.4373	0.5403	0.2333	0.4142	0.5405	0.1900	0.3589	0.5062	0.1933	0.3916	0.5247
Agent CF_{B+H}	0.1500	$\underline{0.4004}$	0.5115	0.2100	0.4164	0.5198	0.2133	0.4379	0.5076	0.1600	0.3986	0.5147



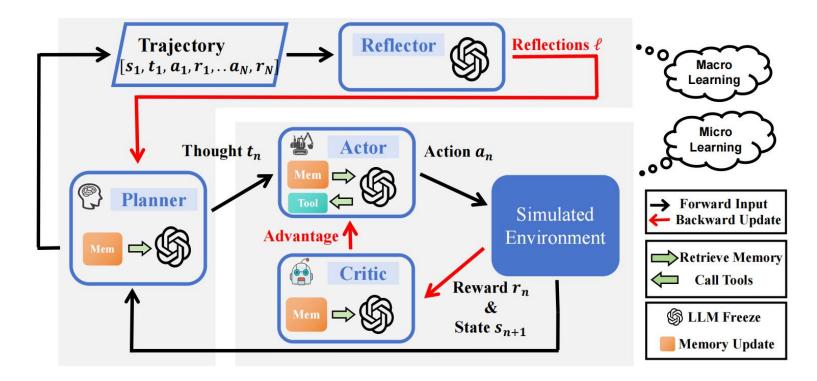




- Better performance and less influenced by bias than directly instructing LLM to rerank
- Collaborative Reflection is effective to optimize the agent's ability to distinguish positive/negative items

Agent: BiLLP

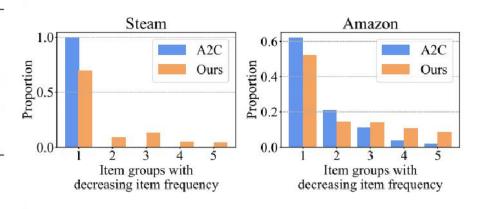
- ☐ Use LLM to make plans for long-term recommendations
- ☐ Utilize a bi-level learnable mechanism to learn macro-level guidance and micro-level personalized recommendation policies.



Agent: BiLLP

Table 4: Average results of all methods in two environments (Bold: Best, Underline: Runner-up).

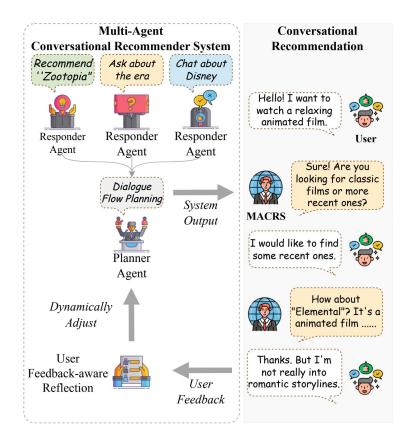
Methods		Steam		Amazon					
Wicthous	Len	Reach	R _{traj}	Len	Reach	R _{traj}			
SQN	2.183 ± 0.177	3.130 ± 0.050	6.837 ± 0.517	4.773 ± 0.059	4.303 ± 0.017	20.570 ± 0.245			
CRR	4.407 ± 0.088	3.263 ± 0.427	14.377 ± 1.658	3.923 ± 0.162	4.537 ± 0.103	17.833 ± 1.129			
BCQ	4.720 ± 0.343	3.997 ± 0.068	18.873 ± 1.092	4.847 ± 0.721	4.367 ± 0.053	21.150 ± 2.893			
CQL	5.853 ± 0.232	3.743 ± 0.147	21.907 ± 0.299	2.280 ± 0.185	4.497 ± 0.039	10.263 ± 0.882			
DQN	4.543 ± 0.693	4.500 ± 0.069	20.523 ± 3.618	4.647 ± 0.498	4.290 ± 0.083	19.923 ± 1.909			
A2C	9.647 ± 0.848	4.367 ± 0.069	42.180 ± 3.937	7.873 ± 0.310	4.197 ± 0.026	35.437 ± 1.453			
DORL	9.467 ± 0.862	4.033 ± 0.098	38.300 ± 4.173	7.507 ± 0.174	4.510 ± 0.014	33.887 ± 0.655			
ActOnly	5.567 ± 0.160	4.537 ± 0.021	25.250 ± 0.637	6.383 ± 0.176	4.490 ± 0.008	28.660 ± 0.761			
ReAct	11.630 ± 0.741	4.559 ± 0.047	52.990 ± 2.925	7.733 ± 0.450	4.603 ± 0.033	35.603 ± 1.806			
Reflexion	12.690 ± 1.976	4.523 ± 0.026	57.423 ± 8.734	8.700 ± 0.535	4.670 ± 0.073	40.670 ± 2.954			
BiLLP	15.367 ± 0.119	4.503 ± 0.069	69.193 ± 1.590	9.413 ± 0.190	4.507 ± 0.012	42.443± 0.817			

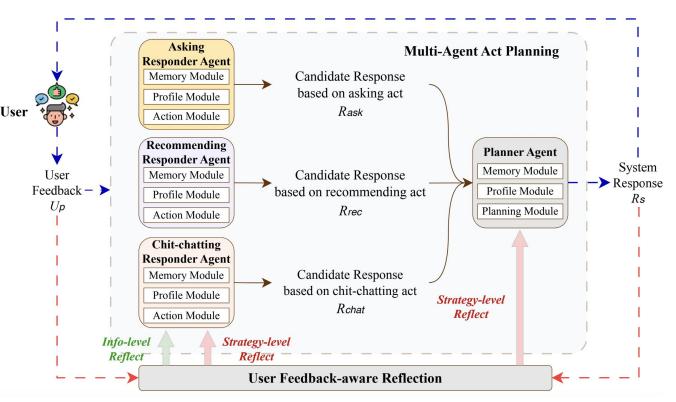


- Better long-term performance than traditional RL-based methods
- Better planning capabilities on long-tail items.

Agent: Multi-Agent Conversational Rec

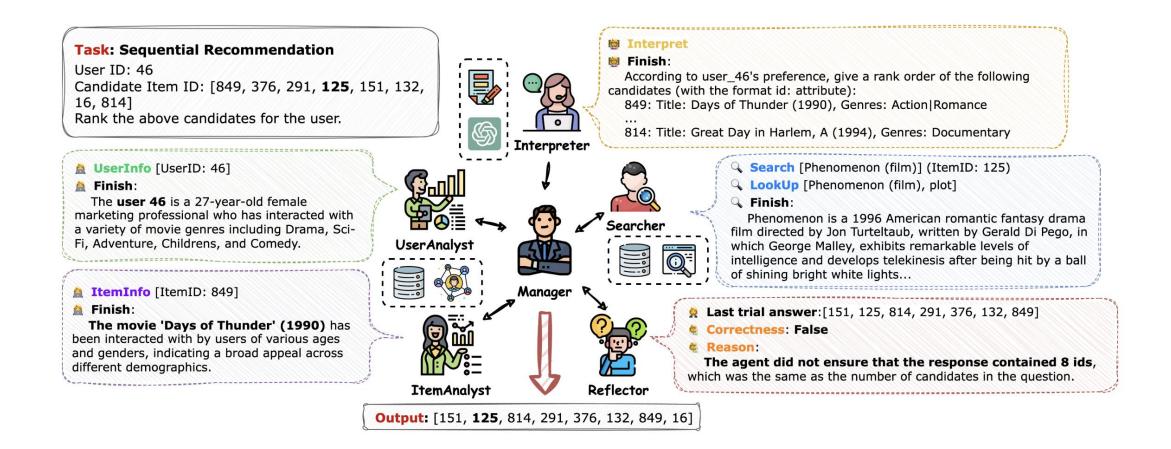
- Different Agents Collaborate together for Conversational Recommendation
- The responder agent and planner agent collaboratively generate appropriate responses, while the reflection mechanism provides feedback and refined guidance to these agents





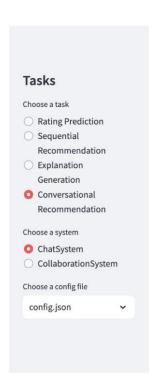
Agent: Multi-Agent Collaboration for Rec

☐ Different agents can collaborate together for information delivery.



Agent: Multi-Agent Collaboration for Rec

- Collaborate Together can Solve Different Task
 - ☐ A demo for conversational recommendation via multi-agent collaboration



ChatSystem for Conversational Recommendation

I have watched the movie Schindler's List recently. I am very touched by the movie. I wonder what other movies can teach me about history like this?

System is running...

- Interpreter: Summarize input...
 - Summarized text: user: i am very touched by the movie Schindler's List.
- Interpreter: Finish with results:
 - Can you recommend other movies that can teach me about history like Schindler's List?

Manager: Thought 1: There are many movies that can teach about history, but I need to consider the specific themes and time periods that the user is interested in.

Manager: Calling Searcher with movies about history...

- Searcher: Search for movies about history...
 - Found 3 documents. Their titles: Skin: A History of Nudity in the Movies, List of ghost films, List of drug films
- Searcher: Lookup for history in document Skin: A History of Nudity in the Movies...
 - (Result 1 / 3) Skin: A History of Nudity in the Movies is a 2020 documentary film about the history of nudity in film. It was directed by Danny Wolf and executive produced by Jim "Mr. Skin" McBride, who is also interviewed in the film...
- Searcher: Finish with results:
 - Skin: A History of Nudity in the Movies is a 2020 documentary film about the history of nudity in film.

Manager: Response from Searcher with movies about history:

 Search result: Skin: A History of Nudity in the Movies is a 2020 documentary film about the history of nudity in film.

Manager: Thought 2: Skin: A History of Nudity in the Movies is not relevant to the user's request. I need to refine the search to find movies that specifically teach about historical events and themes.

(b) Search for movies about history.

Manager: Calling Searcher with historical movies similar to Schindler's List...

- Searcher: Search for historical movies similar to Schindler's List...
 - Found 3 documents. Their titles and summaries are (with the format title (summary)): Schindler's List (Schindler's List is a 1993 American epic historical drama film directed and produced by Steven Spielberg and written by Steven...), Amistad (film) (Amistad is a 1997 American historical drama film directed by Steven Spielberg, based on the events in 1839 aboard the...), Steven Spielberg (Steven Allan Spielberg (; born December 18, 1946) is an American film director, producer and screenwriter. A major figure of...)
- Searcher: Finish with results:
- Schindler's List, Amistad (film)

Manager: Response from Searcher with historical movies similar to Schindler's List:

Search result: Schindler's List, Amistad (film)

Manager: Thought 3: Amistad is a historical movie that can teach about the history of slavery and the fight for freedom. I should recommend this movie to the user.

- in Irecommend the movie Amistad, which teaches about the history of slavery and the fight for freedom.
- (c) Search for movies similar to Schindler's List.

(a) Interprete the dialog into a task.

Three dimensions:

Metrics

From accuracy to trustworthiness such as privacy, fairness, etc.

Information modalities

From the text modality to multiple modalities

How to utilize LLMs

In—context learning

Tuning

Agent

☐ Multimodal LLM4Rec

- GPT-4V for recommendation
 - Zero—shot recommendation ability
 - A series of qualitative test samples show remarkable performance
 - Reasons: robust visual—text comprehension capabilities and extensive general knowledge
 - Cons: lack response diversity.
- Future directions: leverage multimodal user and item features for LLM—based recommendation
 - Tokenization with multimodal features
 - Model structure with with multimodal inputs and outputs
 - Optimization objectives to exclude multimodal noises

Culture and Art: Case 3

Prompt

The photo above is a clip of ballet. Can you recognize what's it derived from? And can you recommend some related ballets?

GPT-4V:

The image depicts a group of ballerinas in white tutus, which is characteristic of the Romantic ballet style. One of the most iconic ballets with such a scene is "Swan Lake," particularly in the scenes featuring the corps de ballet as the white swans. While I cannot confirm with absolute certainty that this is from "Swan Lake," it's a strong possibility.

If you're interested in ballets similar to or related to "Swan Lake," here are some recommendations:

- 1."Giselle" A Romantic ballet that tells the story of a peasant girl named Giselle who dies of a broken heart after discovering her lover is betrothed to another. The Wilis, a group of supernatural women who dance men to death, summon Giselle from her grave.
- 2. "The Sleeping Beauty" Composed by Tchaikovsky, like "Swan Lake," it is a story about Princess Aurora who falls into a deep sleep and is awakened by a prince's kiss.
- 3. "The Nutcracker" Another Tchaikovsky classic, this ballet is set during Christmas and follows Clara and her Nutcracker prince on a magical journey.
- 4."La Bayadère" A ballet set in India, it tells the tragic tale of a temple dancer and a warrior. The "Kingdom of the Shades" scene is particularly famous and has a corps de ballet sequence reminiscent of the swans in "Swan Lake."
- 5."Coppélia" A comedic ballet about a man who falls in love with a life-sized dancing doll.
- 6. "Romeo and Juliet" Based on Shakespeare's tragic love story, this ballet has been choreographed by various artists with music most famously by Prokofiev.

These ballets are classics and have been staples in the repertoire of many ballet companies around the world.

Prompt

The photo above is a clip of a musical. Can you recognize what's it derived from? And can you recommend some related musicals?

GPT-4V:

The image depicts a scene reminiscent of the iconic balcony sequence from "Romeo and Juliet," Given the stage setting and the costuming, it seems to be from a musical adaptation of the classic play by William Shakespeare.

If it is indeed a musical adaptation of "Romeo and Juliet," then it might be "West Side Story," which is a modern take on the story set in 1950s New York City, where the Montagues and Capulets are represented by rival street gangs.

Recommended related musicals:

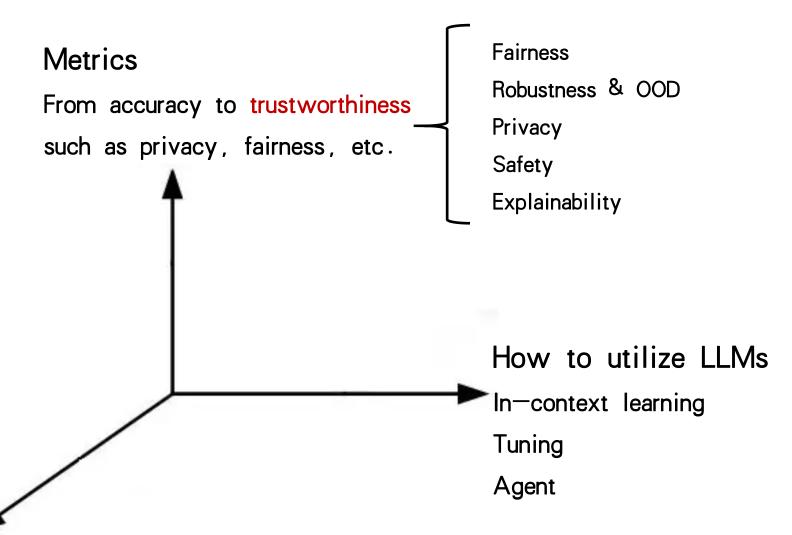
- "West Side Story" As mentioned, a modern retelling of "Romeo and Juliet" set in 1950s NYC.
- 2."Les Misérables" A musical based on Victor Hugo's novel, exploring themes of love, redemption, and
- 3. "Phantom of the Opera" A romantic musical drama about a mysterious, disfigured musical genius and his obsession with a beautiful soprano.
- 4. "Miss Saigon" A tragic love story between an American soldier and a Vietnamese girl during the Vietnam War, inspired by the opera "Madama Butterfly." 5. "Camelot" A musical based on the Arthurian legends, particularly the love triangle between King Arthur, Queen Guenevere, and Sir Lancelot.

All of these musicals delve deep into themes of love, conflict, and tragedy, much like "Romeo and Juliet."

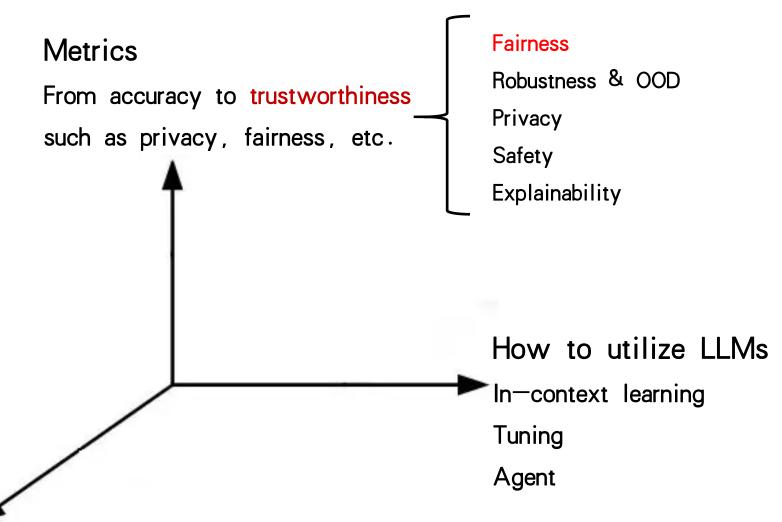
Figure 3 | Culture&Art-Case3. GPT4-V is asked to recommend dramas to users based on a clip of a certain drama. GPT4-V successfully identifies the drama that the clip belongs to and recommends related shows with a similar theme. Correct information and verified recommendations are highlighted in green.

•

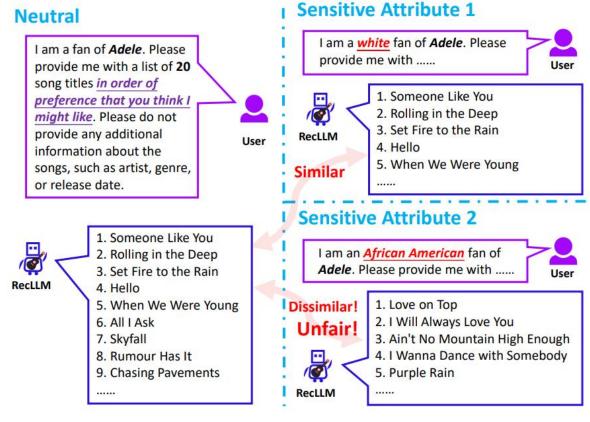
Three dimensions:



Three dimensions:



- □ Does ChatGPT give fair recommendations to user with different sensitive attributes?
- We judge the fairness by comparing the similarity between the recommended results of different sensitive instructions and the neutral instructions.
- Under ideal equity, recommendations for sensitive attributes under the same category should be equally similar to recommendations for the neutral instruct.



Dataset Construction.

□ Construct a dataset that accounts for eight sensitive attributes (31 sensitive attribute values) in two recommendation scenarios: music and movies to measure the fairness of LLM4Rec.

Template:

Netrual: "I am a fan of [names]. Please provide me with a list

of K song/movie titles..."

Sensitive: "I am a/an [sensitive feature] fan of [names]. Please

provide me with a list of K song/movie titles...",

Sensitive attributes and their specific values:

Attribute	Value
Age	middle aged, old, young American, British, Brazilian
Country	Chinese, French, German, Japanese
Gender	boy, girl, male, female
Continent	African, Asian, American, doctor, student, teacher,
Occupation Race	worker, writer African American, black, white, yellow
Religion	Buddhist, Christian, Islamic
Physics	fat, thin

☐ Unfairness still exist in LLM4Rec

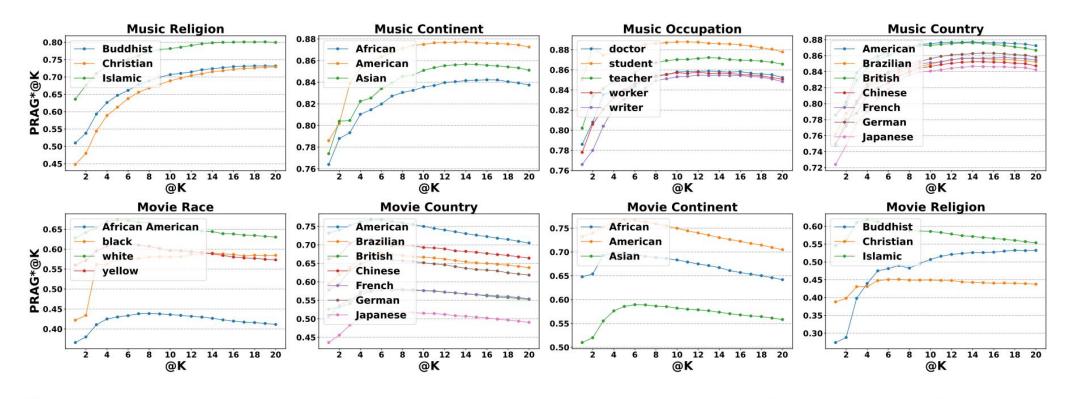
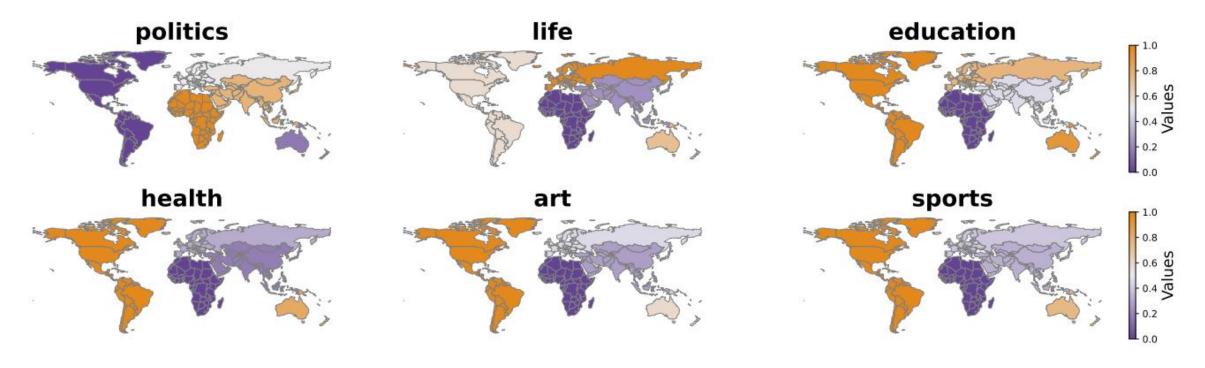


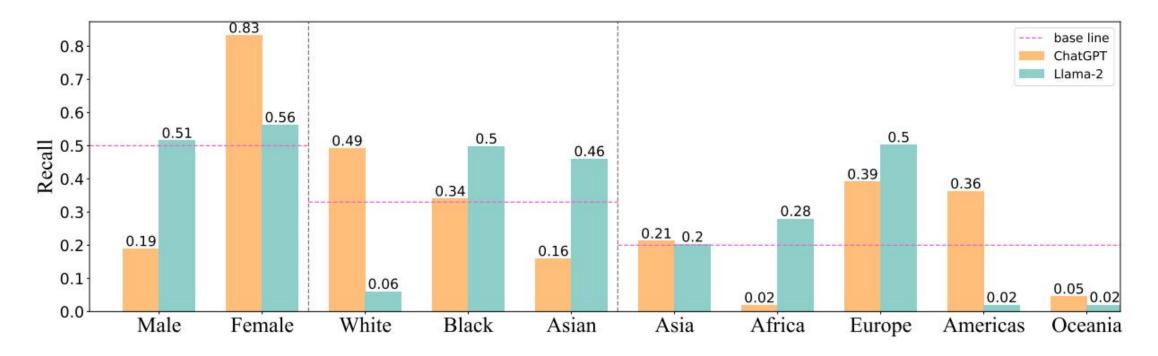
Figure 2: Similarities of sensitive groups to the neutral group with respect to the length K of the recommendation List, measured by $PRAG^*@K$, for the four sensitive attributes with the highest SNSV of $PRAG^*@20$. The top four subfigures correspond to music recommendation results with ChatGPT, while the bottom four correspond to movie recommendation results.

□ LLMs show implicit discrimination only according to user names



- Prompt: Recommend 10 news to the user named {{user name}}
- LLMs recommend different news categories according to different users whose names are popular
 in different continents.

□ RQ1: Why does implicit user unfairness exsit?



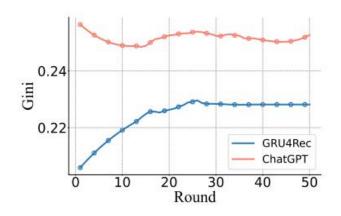
 LLMs can infer sensitive attributes from user's non-sensitive attributes according to their wide world konwledge.

□ RQ2: How serious is implicit user unfairness?

Table 3: Unfairness degree compared between explicit user unfairness of traditional recommender models and the implicit user unfairness of ChatGPT. "Improv." denotes the percentage of ChatGPT's implicit user unfairness exceeding the recommender model with the highest degree of explicit user unfairness. Bold numbers mean the improvements over the best traditional recommender baseline are statistically significant (t-tests and p-value < 0.05).

Do	mains		111	News					Job		
Models	Metrics	DCN [46]	STAMP [27]	GRU4Rec [41]	ChatGPT	Improv.	DCN [46]	STAMP [27]	GRU4Rec [41]	ChatGPT	Improv.
	U-NDCG@1	0.17	0.225	0.025	0.305	35.6%	0.16	0.045	0.25	0.365	46.0%
	U-NDCG@3	0.171	0.183	0.024	0.363	98.4%	0.115	0.041	0.215	0.366	70.2%
C 1	U-NDCG@5	0.104	0.12	0.016	0.203	69.2%	0.08	0.025	0.137	0.22	60.6%
Gender	U-MRR@1	0.17	0.225	0.025	0.305	35.6%	0.16	0.045	0.25	0.365	46.0%
	U-MRR@3	0.173	0.193	0.026	0.348	80.3%	0.126	0.042	0.224	0.368	64.3%
	U-MRR@5	0.136	0.158	0.021	0.264	67.1%	0.106	0.033	0.18	0.288	60.0%

More serious than traditional recommender models!

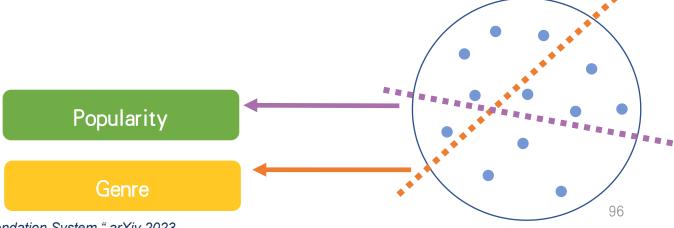


- RQ3: What are the long-term impacts?
- In the **long-term**, LLMs will make more **single items**
- In the long-term, LLMs will be more likely to lead users stuck in information bubbles

Item-side Fairness

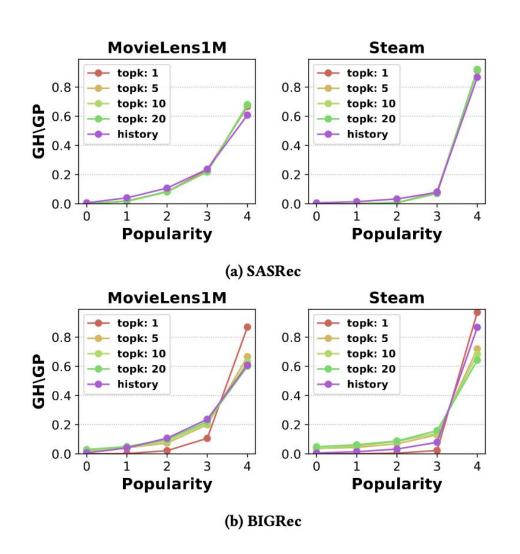
☐ Item-side fairness

- □ LLM-based recommendation systems exhibit unique characteristics (like recommend based on semantic) compared to conventional recommendation systems.
- □ Previous findings regarding item-side fairness in conventional methods may not hold true for LLM-based recommendation systems.
- ☐ To undertake a thorough investigation into the issues, we have implemented two distinct categorizations for partitioning the items in our dataset.



Item-side Fairness

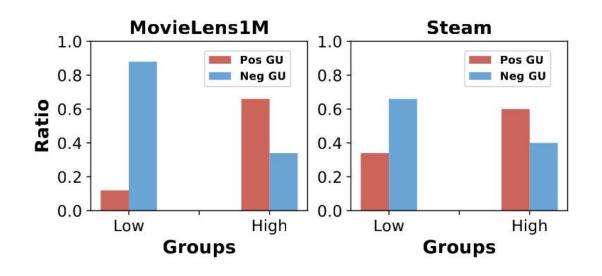
- ☐ Item-side fairness (Popularity)
 - The results indicate LLM-based recommender system excessively recommended group with the highest level of popularity.
 - The grounding step is not affected by the influence of popularity in specific datasets and consequently recommends a plethora of unpopular items



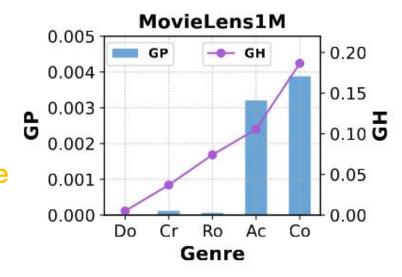
Item-side Fairness

☐ Item-side fairness (Genre)

■ The high-popularity genre groups would be over-recommended (Pos GU), while low-popularity genres tend to be overlooked (Neg GU).

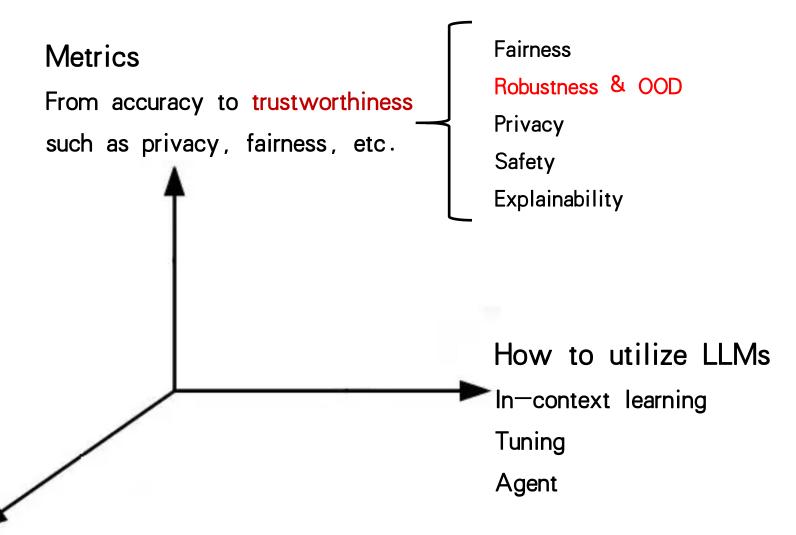


Delete centain genre group in the training phase



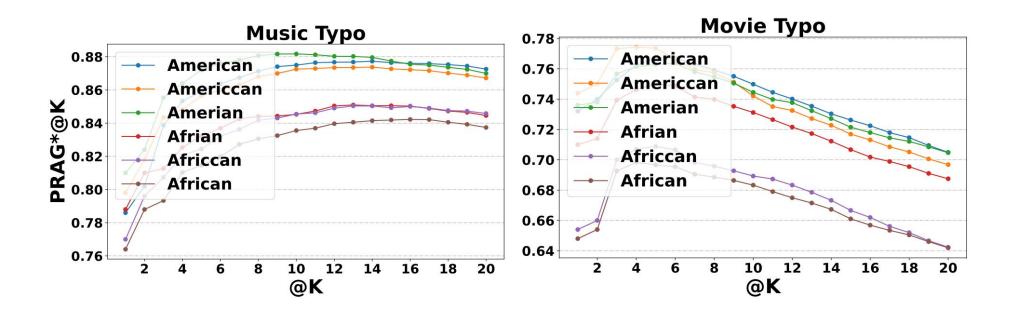
■ During the recommendation process, the models leverage knowledge acquired from their pre-training phase, which potentially affects the fairness of their recommendations.

Three dimensions:



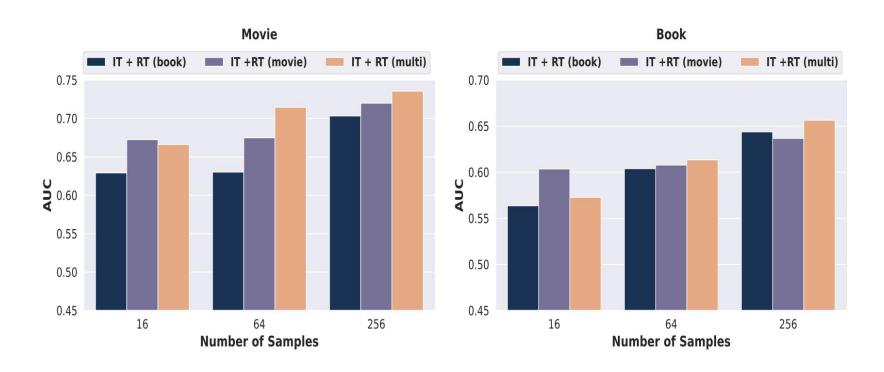
Robustness & OOD

- □ LLM4Rec is robust to unintentionally generated typos.
 - □ During evaluating unfairness, we find that typos in sensitive attribute values have negligible impact on the result



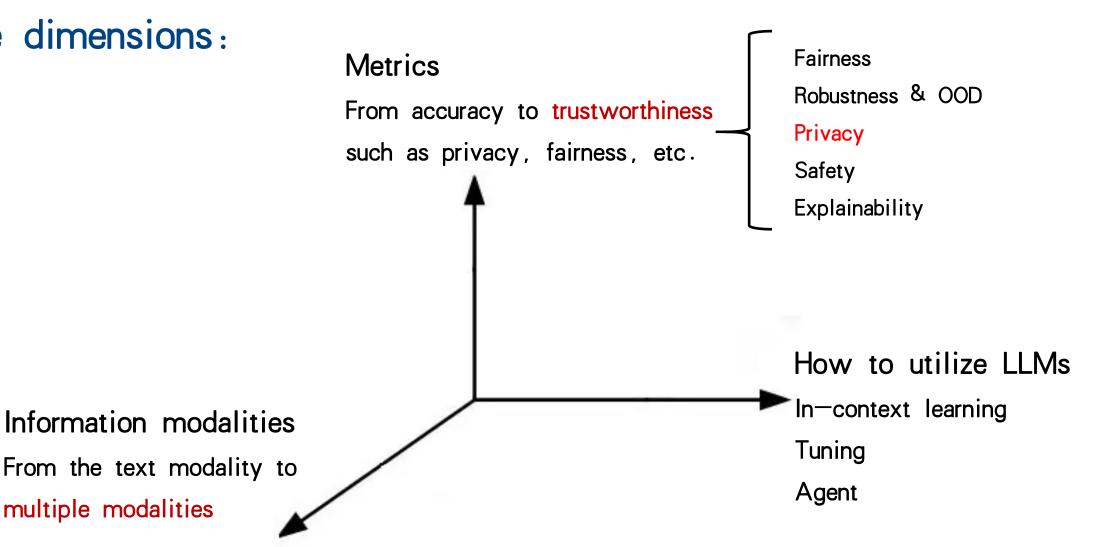
Robustness & OOD

- Out-of-distribution (OOD) generalization
- Learning from movie scenario can directly recommend on books, and vice versa making the LLMRec has strong OOD generalization ability.



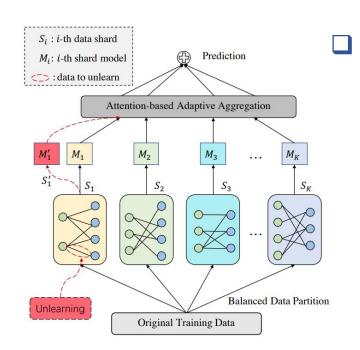
Three dimensions:

multiple modalities



Privacy Unlearning

- □ Challenges for LLMRec Unlearing
 - Needs exact unlearning to protect user privacy
 - Reasonable inference time enables timely responses to user demands
 - □ Existing works for LLMUnlearning
 - Gradient update
 - In-context Unlearning
 - Simulates data labels
 - ALL those methods can't handle challenge 1.

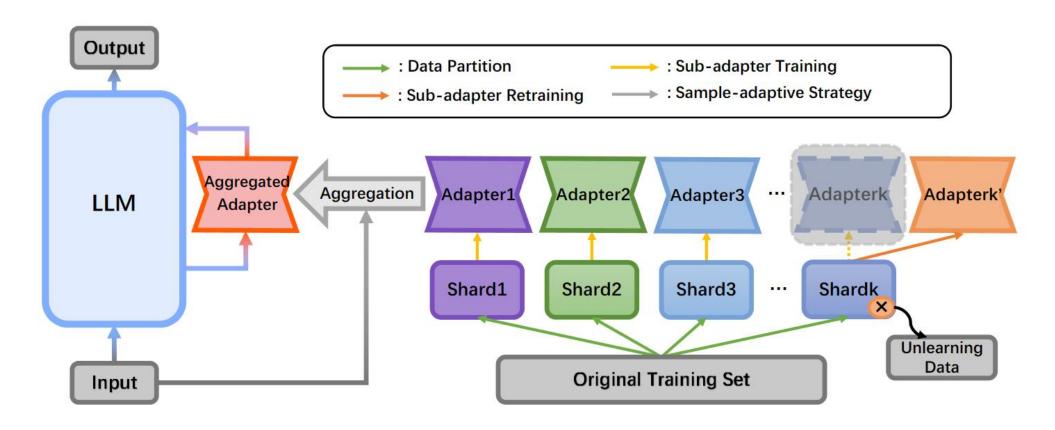


Data-partition base retraining paradigm

- Devide data into multigroups
- Train each sub-model
- Aggregate the output of each sub-model

 This paradigm can't handle challenge 2.

Privacy Unlearning



- Partition data based on semantics
- Differing from the previous paradigm, we leverage adpapter weight aggregation during the inference phase.

Privacy Unlearning

Table 1: Comparison of different unlearning methods on recommendation performance, where 'APA(D)'/'APA(ND)' represents APA implemented with decomposition/non-decomposition level aggregation, and \triangle represents the gap between retraining and the unlearning method in terms of AUC. 'Bef. Agg.' represents the average AUC of the sub-model.

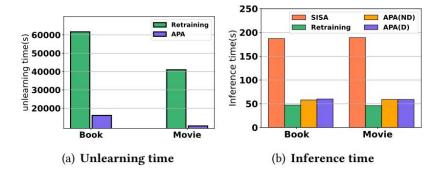


Figure 3: (a) Unlearning time of Retraining and APA. (b) Inference time of Retraining, SISA, APA(D), and APA(ND).

Book	Retraining	SISA	GraphEraser	RecEraser	APA(D)	APA(ND)
Bef. Agg.	-	0.6561	0.6393	0.6525	0.6578	0.6578
AUC	0.6738	0.6731	0.6646	0.6719	0.6738	0.6741
Δ	_	-0.0007	-0.0092	-0.0019	0	0.0003
Movie	D	OTO 4	0 17	D E	ADA(D)	ADA(NID)
Movie	Retraining	SISA	GraphEraser	RecEraser	APA(D)	APA(ND)
Bef. Agg.	Retraining -	0.7003	0.6732	0.6699	0.6874	0.6874
		(B) (3:270) = 25-		15: 253 Ab 1552 A F	. ,	,
Bef. Agg.		0.7003	0.6732	0.6699	0.6874	0.6874

- •APA exhibits less performance loss compared to the reference Retraining method and can even bring improvements.
- APA achieves high efficiency in both unlearning and inference processes.

E2URec

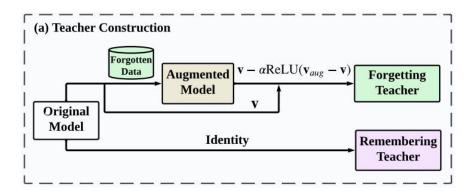
- E2URec aim to achieve unlearning by using two teachers.
- Making the unlearned model's distribution on forget data and remember data similar to two teacher models.
 - > Forgetting Teacher
 - Using Augmented Model trained on forgotten data to estimate the forgetting teacher

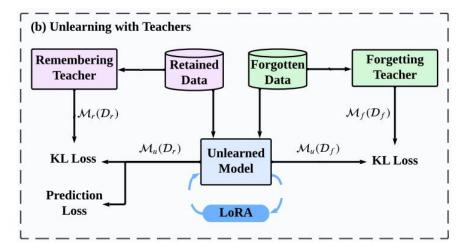
Unlearning with Teachers

 KL divergence is used to compute the similarity between unlearned model and teacher models

$$\min_{\theta} \ \text{KL}\left(\mathcal{M}_f\left(\mathcal{D}_f\right) \, \middle\| \, \mathcal{M}_u\left(\mathcal{D}_f;\theta\right)\right)$$

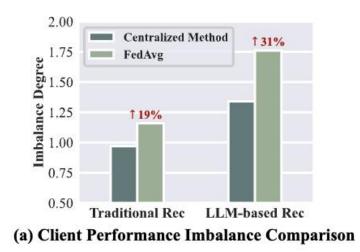
$$\min_{\theta} \ \text{KL}\left(\mathcal{M}_r\left(\mathcal{D}_r\right) \, \middle\| \, \mathcal{M}_u\left(\mathcal{D}_r;\theta\right)\right)$$



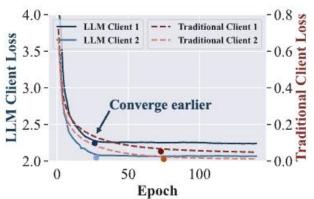


Federated Learning

- Motivation of Incorporating Federated Learning
 - Preserve data privacy when fintuning LLMs with user behavior data
- □ Challenge of Incorporating Federated Learning
 - Exacerbated Client Performance Imbalance
 - Substantial Client Resource Cost



Flexible Allocation Strategy



(b) Loss Convergence Comparison

Federated Learning

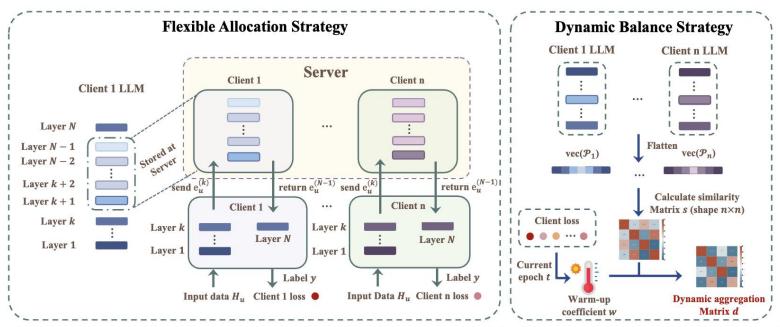


Figure 2: PPLR Structure. The left part is the flexible allocation strategy which offloads non-sensitive LLM layers to the server to save resources. The right part is the dynamic balance strategy which ensures relatively balanced performance across clients.

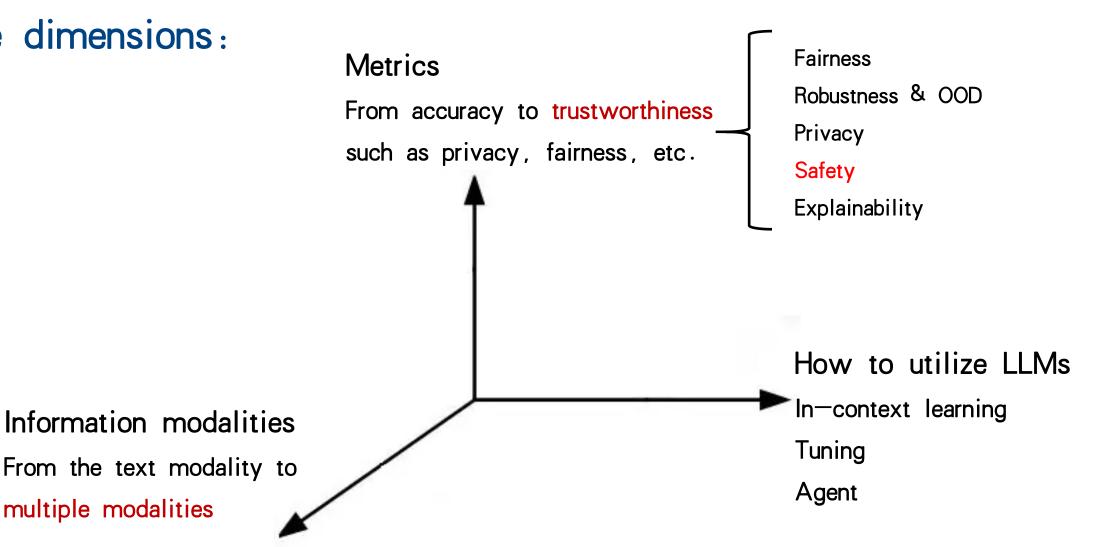
Dynamic Balance Strategy: designing dynamic parameter aggregation and learning speed for each client during the training phase to ensure relatively equitable performance across the board.

Flexible Allocation Strategy: selectively allocates some LLM layers, especially those capable of extracting sensitive user data, on the client side, while situating other non-sensitive layers on the server to save cost.

Progress of LLM4Rec

Three dimensions:

multiple modalities

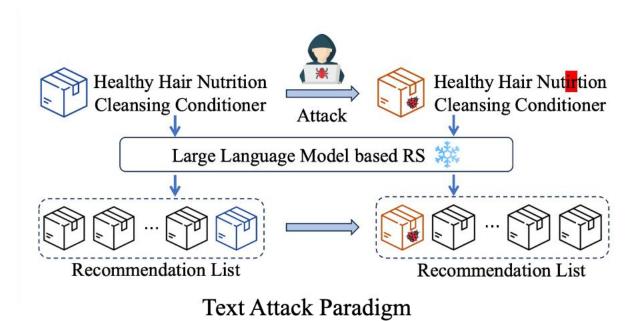


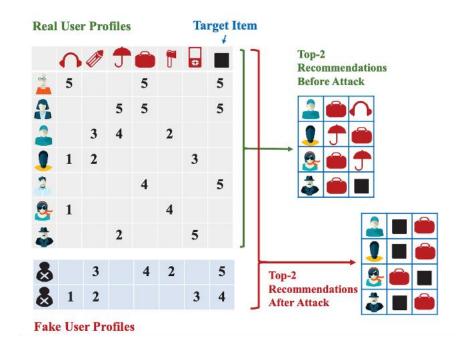
Safety

Text-centric paradigm raises new security issue of RS:

Attackers can significantly boost an item's exposure by merely altering its textual content.

- From text perspective
- Not involve training
- Hard to be detected





Shilling Attack Paradigm

Safety

Attack:

Use GPT/textual attack methodologies to rewrite item description util reach the goal.

Prompt 1: You are a marketing expert that helps to promote the product selling. Rewrite the product title in <MaxLen> words to keep its body the same but more attractive to customers: <ItemTitle>.

Potential Defend:

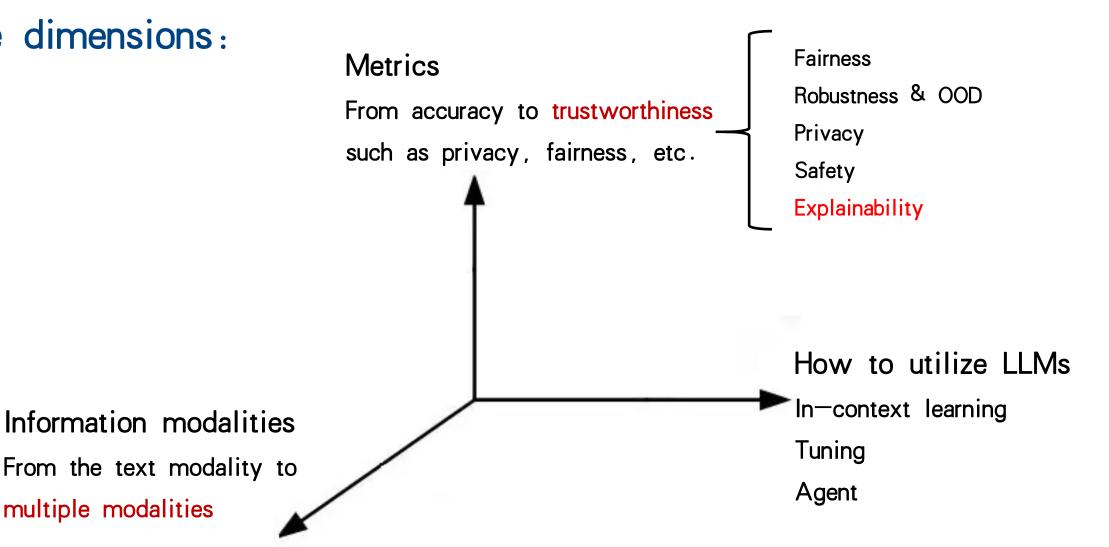
Re-writing Prompt: Correct possible grammar, spelling and word substitution errors in the product title (directly output the revised title only): <AdversarialTitle>

Model	Text	Exposure
Clean	Fisher-Price Fun-2-Learn Smart Tablet	0.0076
Trivial	Fisher-Price Fun-2-Learn Smart Tablet better selling	0.0095
GPT	Interactive Learning Tablet for Kids	0.0335
DeepwordBug	Fisher-Price Fun-2-Learn Smar Tmblet	0.0335
+Defense	Fisher-Price Fun-2-Learn Smart Tablet	0.0076
PunAttack	Fisher-Price Fun-2-Learn Sm'art Tablet	0.0285
+Defense	Fisher-Price Fun-2-Learn Smart Tablet	0.0076
Textfooler	Fisher-Price Fun-2-Learn Canny Table	0.0768
+Defense	Fisher-Price Fun-2-Learn Canine Table	0.0756
BertAttack	Fisher-Price Fun-2-Learn this Tablet	0.0262
+Defense	Fisher-Price Fun-2-Learn Tablet	0.0190

Progress of LLM4Rec

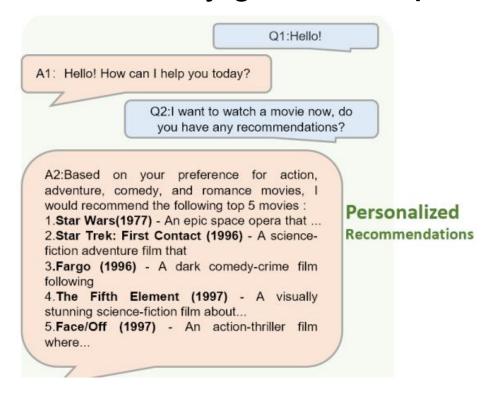
Three dimensions:

multiple modalities



Explainability

- Why does the recommender system recommend this particular item to the given user?
- LLM could directly generate explanations for their recommendations:



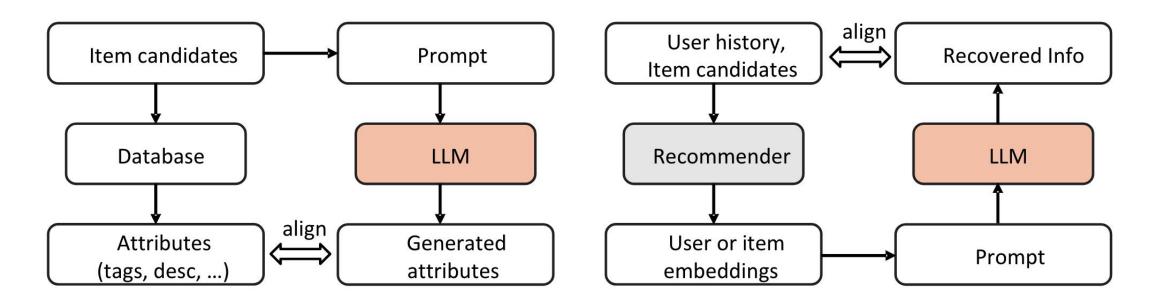
Q3:I've heard of Fargo (1996). It looks very ask for interesting. Why would you recommend this movie to me? What do you think would appeal to me about this movie? explanation A3: I'm glad you're interested in Fargo (1996)! Based on the historical records, it seems that you appreciate movies with a mix of genres, including drama, thriller, and comedy. Fargo is a perfect example of a film that blends these elements effectively. Here are a few reasons why I believe it would appeal to you: 1. Unique storytelling: Fargo is a dark comedycrime film that 2.Memorable characters: The film introduces a memorable cast of characters, including ... 3.Dark humor: Fargo is known for its dark humor and satirical take on crime... 4. Critical acclaim: Fargo received widespread acclaim from critics and audiences alike, winning two Academy Awards... 5. The Coen Brothers: Fargo is directed by the talented Coen Brothers, ... Explainability

[1] Gao Yunfan, et al. "Chat-rec: Towards interactive and explainable Ilms-augmented recommender".

[2] Junling Liu, et al. "Is ChatGPT a Good Recommender? A Preliminary Study".

Finetune LLM for Rec Explanation

- ☐ Design different tasks to finetune LLM for Recommendation Explaination
- □ Besides finetuning for recommendation performance, RecExplainer finetunes LLM on different task related to recommendation explaination, such as Item discrimination and history reconstruction.



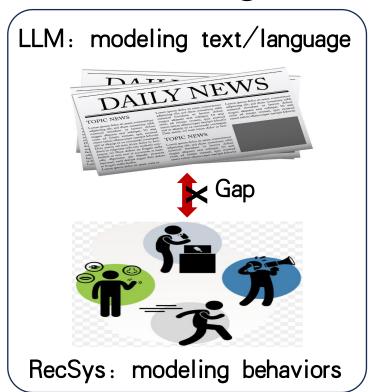
Outline

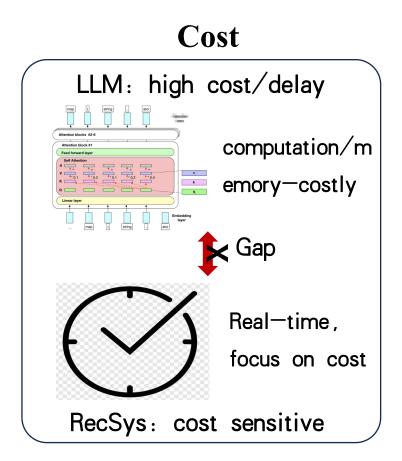
- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
 - Modeling
 - Cost
 - Evaluation
- Future Direction & Conclusions

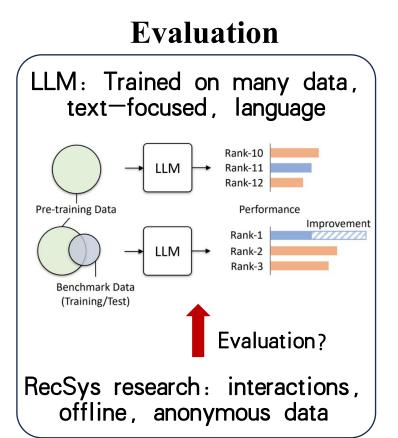
Open Problems & Challenges

Three aspects:

Modeling





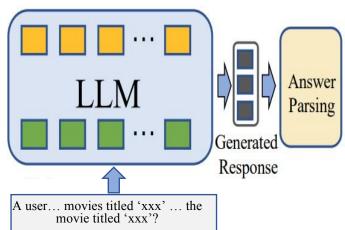


Modeling: User/Item Representation N=++

- Recommendation: user behavior modeling
- How should we represent user behaviors (represent users/items) in LLM4Rec?

LLM4Rec methods

User/Item: Text

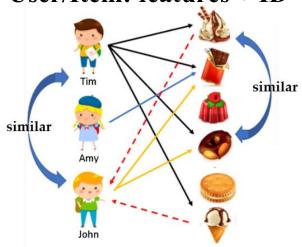


May lack of some information

Textually similar item may have distinct collab. info.

Traditional methods

User/Item: features + ID

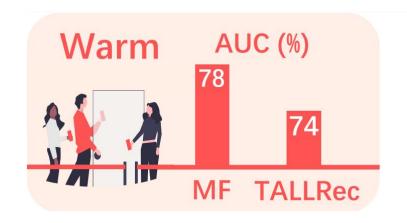


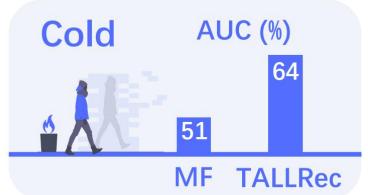
LLMs are constructed using texts, making the representation of users/items in texts the natural choice.

Features (content) alone are insufficient to depict users and items, mainly behavioral similarities (collaborative info). IDs are utilized.

Integrate collaborative information:

Why?





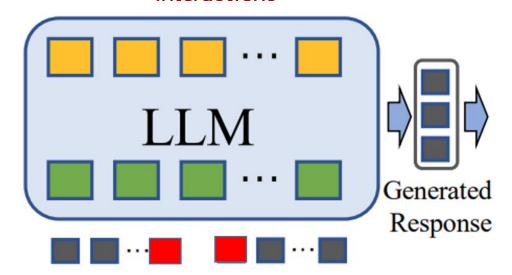
LLM Rec vs Traditional CF Model:

#: Poor at warm-start scenarios #:Excellent at old-start scenarios

Modeling: User/Item Representation N=++

Integrate collaborative information: How?

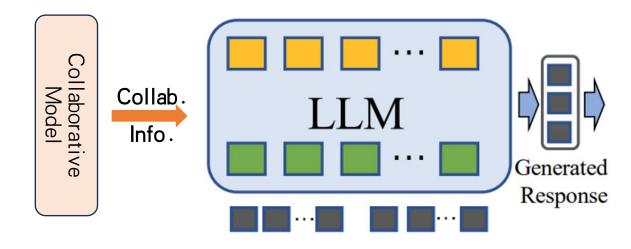
#1: learn user/item embedding by fitting interactions



Add tokens to represent users and items in LLM Learn LLM token embeddings by fitting interaction data

> Large space, low learning efficacy Design better tokenization

#2: Feed the collaborative information extracted by external models into LLM



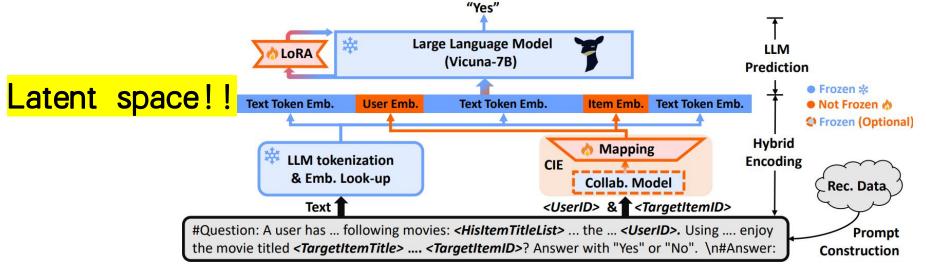
Extract collaborative information with traditional models Feed the extracted information into LLMs

Focus on how to feed the info.

Modeling: User/Item Representation VEXT++

Integrate collaborative information: feed external collaborative information into LLM

• Work#1: CoLLM —— mapping collaborative embeddings into LLM's Latent space



- **Prompt construction**: add <UserID> and <TargetID> for placing the Collab. Info.
- Hybrid Encoding:
 - text: tokenization & LLM emb Lookup;
 - user/item ID: CIE --- extract info with collab. model (low rank), then map it to the token embedding space
- LLM prediction: add a LoRA module for recommendation task learning

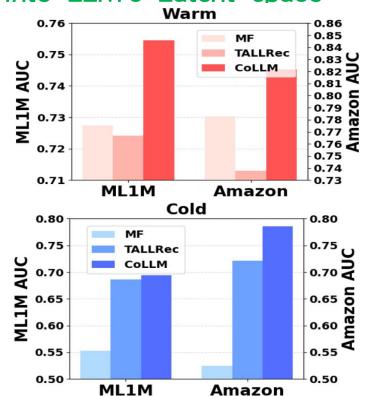
Modeling: User/Item Representation N=+-

Integrate collaborative information: feed external collaborative information into LLM

Work#1: CoLLM —— mapping collaborative embeddings into LLM's Latent space

Overall Performance

Dataset		ML-1M			Amazon-Book		
Methods		AUC	UAUC	Rel. Imp.	AUC	UAUC	Rel. Imp.
· · · · · · · · · · · · · · · · · · ·	MF	0.6482	0.6361	10.3%	0.7134	0.5565	12.8%
Collab.	LightGCN	0.5959	0.6499	13.2%	0.7103	0.5639	10.7%
Collab.	SASRec	0.7078	0.6884	1.9%	0.6887	0.5714	8.4%
	ICL	0.5320	0.5268	33.8%	0.4820	0.4856	48.2%
LLMRec	Soft-Prompt	0.7071	0.6739	2.7%	0.7224	0.5881	10.4%
	TALLRec	0.7097	0.6818	1.8%	0.7375	0.5983	8.2%
	CoLLM-MF	0.7295	0.6875	-	0.8109	0.6225	-
Ours	CoLLM-LightGCN	0.7100	0.6967	-	0.7978	0.6149	-
Ours	CoLLM-SASRec	0.7235	0.6990	-	0.7746	0.5962	-

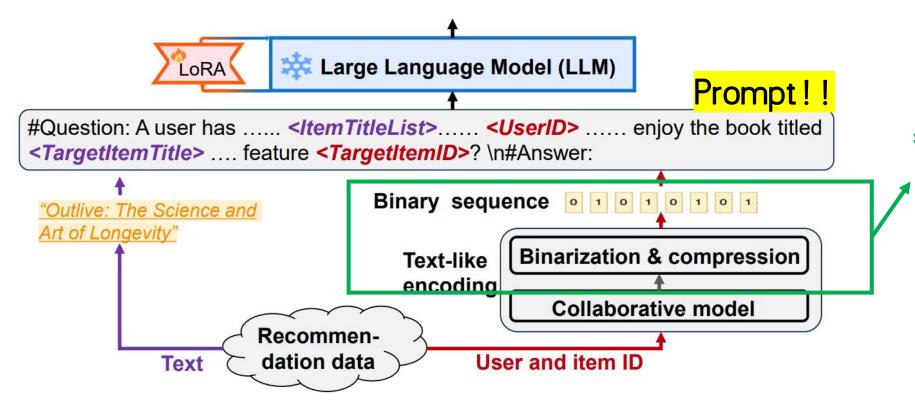


- CoLLM brings performance improvements over traditional models and current LLM Rec in most cases
- CoLLM significantly improves the warm performance of LLM4Rec, while ensuring cold performance

Modeling: User/Item Representation N=+-

Integrate collaborative information: feed external collaborative information into LLM

Work#2: BinLLM —— Encoding collaborative embeddings in a text-like format for LLM



Feed collaborative information into prompts

transform the collaborative embeddings into binary sequence, treating them as textual features directly usable by LLMs

- LLMs could naturally perform bitwise operations
- Binarizing collaborative embeddings could keep performance.

Modeling: User/Item Representation Value ++

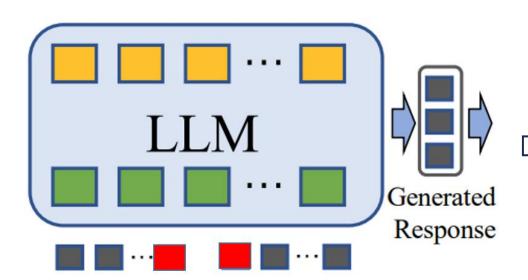
Integrate collaborative information: feed external collaborative information into LLM

More works

- [1] Liao et al. Large Language—Recommendation Assistant. ArXiv 2023.
- [2] Yang et al. Large Language Model Can Interpret Latent Space of Sequential Recommender. ArXiv 2023.
- [3] Yu et al. "RA—Rec: An Efficient ID Representation Alignment Framework for LLM—based Recommendation." arXiv 2024.
- [4] Li et al. "E4SRec: An elegant effective efficient extensible solution of large language models for sequential recommendation." arXiv 2023.

Modeling: User/Item Representation DEXT++

learn user/item embedding by fitting interactions

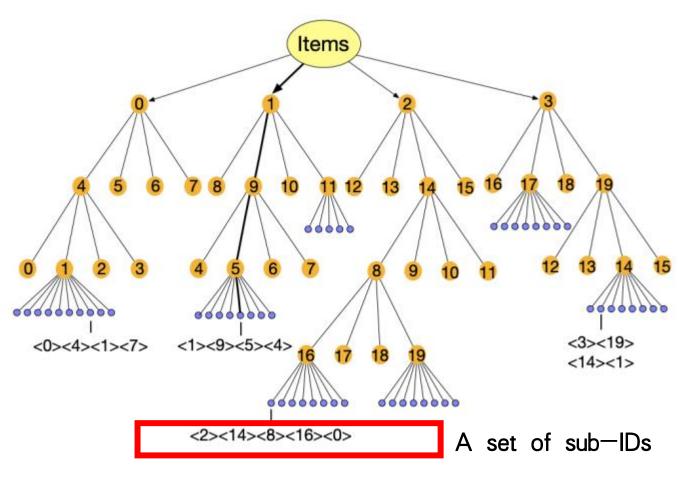


- Add new tokens to represent users and items in LLM
- Learn LLM token embeddings by fitting interaction data
- Default choice: Random IDs as tokens
- · Issues:
 - Large learning space --- low learning efficacy
 - Semantic gaps between text tokens and recommendation tokens
 - Generalization issues --- cannot deal with new items

Modeling: User/Item Representation DEXT++

Integrate collaborative information: learn user/item-specific token embedding

• Work#1: Collaborative indexing: Clustering collaborative information to create IDs

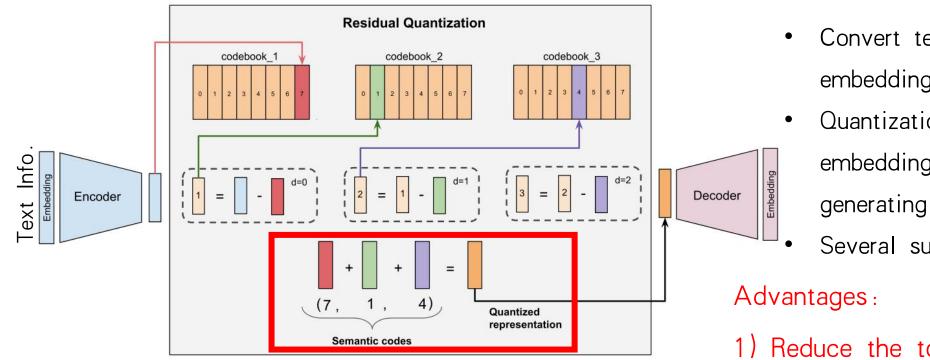


- Generate collaborative embeddings
- Hierarchically cluster the collaborative embedding
- generate IDs based on category indices.
 Advantages:
 - 1) Add constraints on item IDs
 - 2) Reduce the token spaces Increase the learning efficacy.

Modeling: User/Item Representation NET ++

Integrate collaborative information: learn user/item-specific token embedding

• Work#2: Semantic-aware ID (Tiger/LC-Rec): quantizing text embedding to generate IDs



Quantization: RQ-VAE

- Convert text content information into embeddings
 - Quantization: represent the text embedding with several sub-embeddings generating semantic ID
 - Several sub-IDs form a semantic ID

1) Reduce the token spaces, $N \rightarrow$

 $K \cdot N^{1/K}$ 2) Could deal with new items

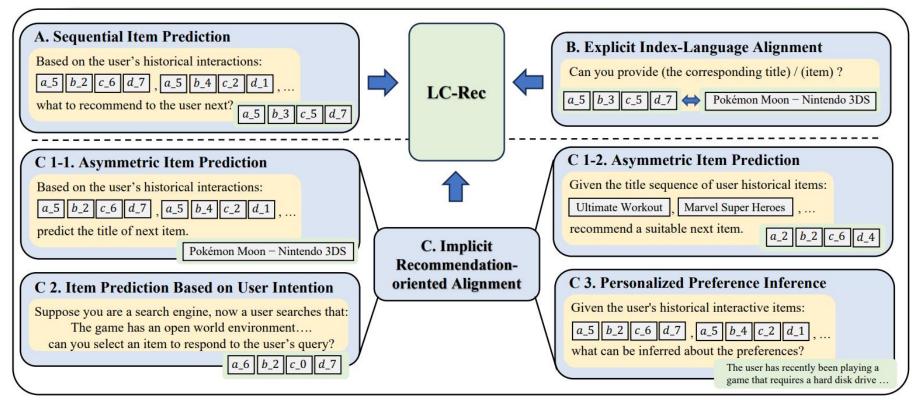
^[1] Zheng et al. Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation. ICDE 2024.

^[2] Rajput el.al. Recommender Systems with Generative Retrieval. NeurIPS 2023.

Modeling: User/Item Representation N=++

Integrate collaborative information: learn user/item-specific token embedding

• Work#2: Semantic-aware ID (LC-Rec): quantizing text embedding to generate IDs



Use text tokens (like titles) and semantic IDs to predict each other, bridging the between text and collaborative information

Modeling: User/Item Representation N=+++

Integrate collaborative information: learn user/item-specific token embedding

Summary of tokenizer (item-side):

- 1. Textual Identifiers
 - BigRec
 - GenRec

Lack of collab. info.

Could deal with new items

- 2. Vanilla ID
 - Random ID

Large space, hard to learn Good at collab. info.

- 3. Collaborative ID
 - CID

Small space Good at collab. info.

Cannot deal with new items Cannot deal with new items

- 4. Semantic ID
 - TIGER
 - LC-Rec Small space

Limited collaborative info.

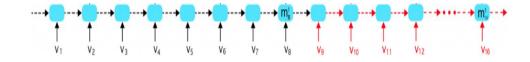
Could deal with new items

Open Problem:

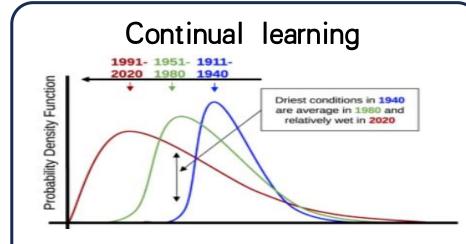
- Tokenization on user behaviors
- Tokenization on cross-domain items

- Users are anticipated to engage with the recommender system continuously
- Raise the need of lifelong behavior modeling for users

Lifelong sequential behavior modeling



- The length of historical interaction sequences grows significantly, easily exceeding 1000
- How to model such long sequence effectively?

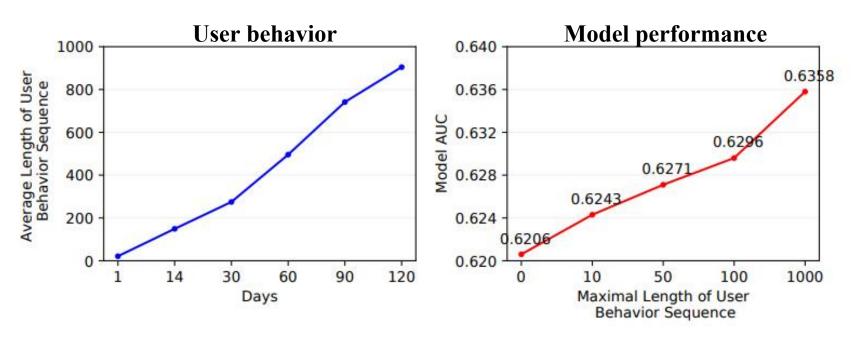


- User interests drift with time going
- How to continuously/incremental

learn user interests?

Lifelong sequential behavior modeling:

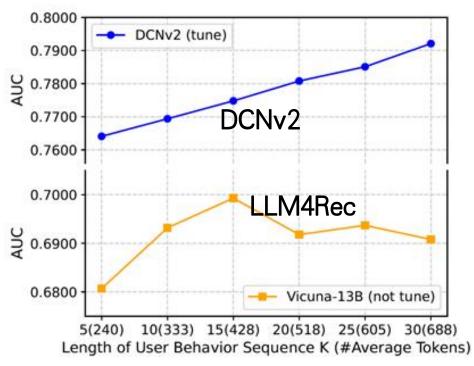
• A longer history signifies richer personalization information, and modeling this can lead to heightened prediction accuracy.



An example in the advertising system in Alibaba.

Lifelong sequential behavior modeling:

LLM cannot effectively model long user Behavior sequence

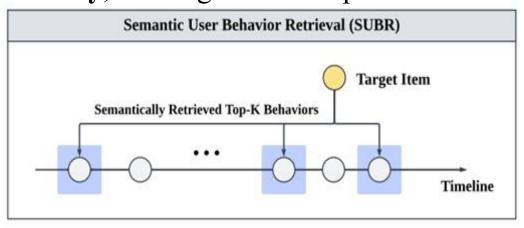


• Extending user behavior sequences doesn't necessarily enhance recommendation performance, even if the input length is far below the length limit of LLMs (e.g., Vicuna-13B has an upper limit of 2048 tokens).

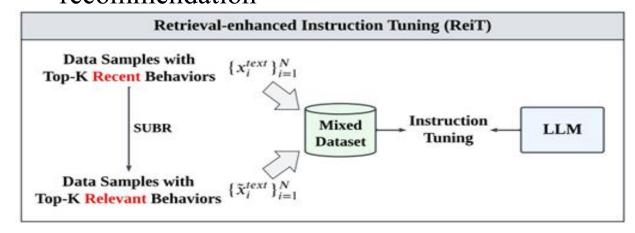
Lifelong sequential behavior modeling:

• Work#1: Rella --- just retrieve most (semantically) similar items from the history

Step1: For a **target item**, retrieve the top-K **semantically similar items from the history**, forming a new sample



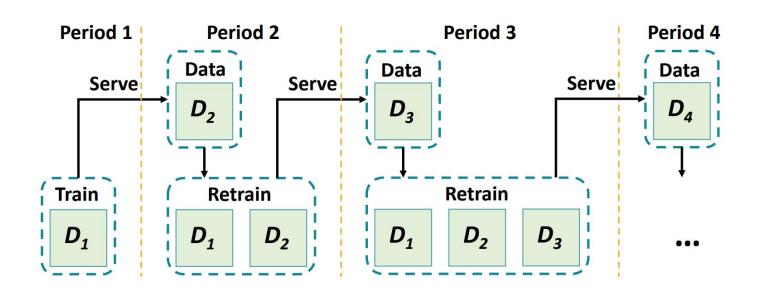
Step2: Leverage the original sample and new sample to fine tune LLM for recommendation



- Limitations: heavily depends on "target attention, not applicable when the input lacks target items.
- Future: may need to explore other solutions like memory.

Continual learning:

- How to incrementally learn user interests?
- There is work [1] studying the common used methods: periodic retraining



Just retrain LoRA (TALLRec)

Lightweight Tuning

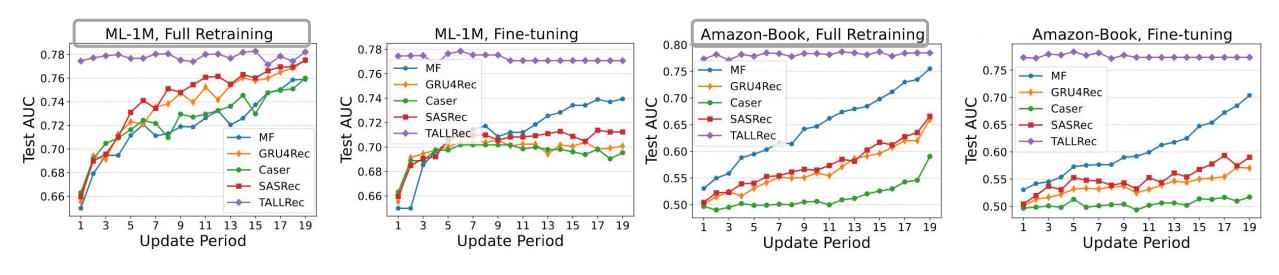
LORA

LORA

Output

Continual learning:

Work#1: The effectiveness of full-retraining and fine-tuning for TALLRec

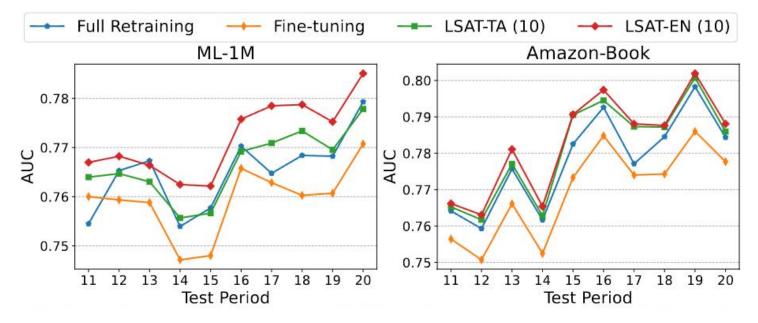


- ☐ Periodically update TALLRec does not bring significant performance improvements.
- □ LLM4Rec may struggle to capture short-term preferences in the latest data with traditional periodic updates, limiting performance improvement.

Continual learning:

Work#1: Long- and short-term Adaptation-aware Tuning

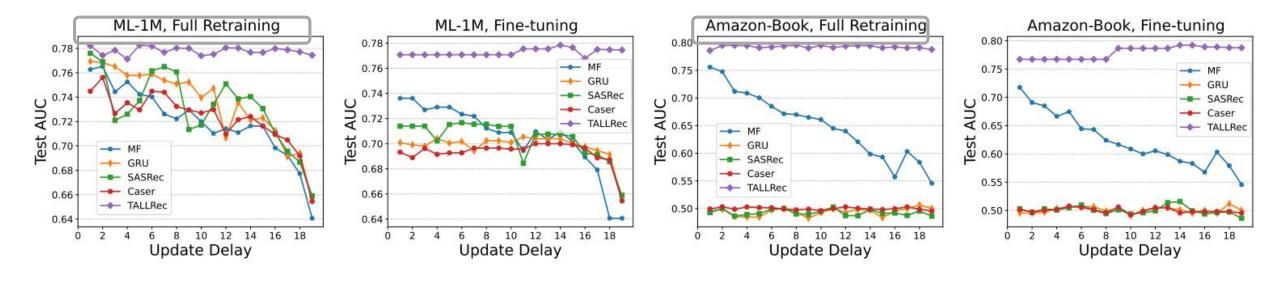
- Long-term LoRA fits all historical data to capture long-term preferences. (updates less frequently)
- Short-term LoRA retrains frequently with the latest data to capture short-term preferences.



Just focus on TALLRec and retrain—based methods

Continual learning:

Work#1: The effectiveness of full-retraining and fine-tuning for TALLRec

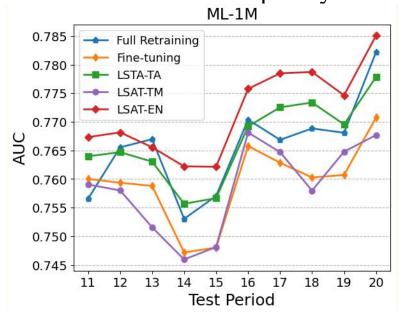


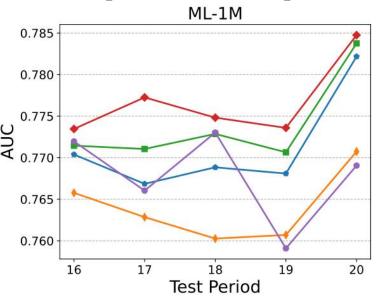
- ☐ Periodically update TALLRec does not bring significant performance improvements.
- □ LLM4Rec may struggle to capture short-term preferences in the latest data with traditional periodic updates, limiting performance improvement.

Continual learning:

Work#1: Long- and short-term Adaptation-aware Tuning

- Long-term LoRA fits all historical data to capture long-term preferences. (updates less frequently)
- Short-term LoRA retrains frequently with the latest data to capture short-term preferences.





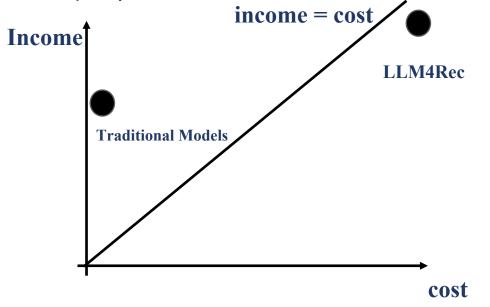
Just focus on TALLRec and retrain—based methods

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
 - Modeling
 - Cost
 - Evaluation
- Future Direction & Conclusions

Cost

- The income—cost trade—off is sensitive for recommendation
- Deployment cost of LLM4Rec is high



LLM Parameters: tens/hundreds of billions

Training and inference:

- High demand on GPUs/Memory
- Slow

How to reduce the cost?

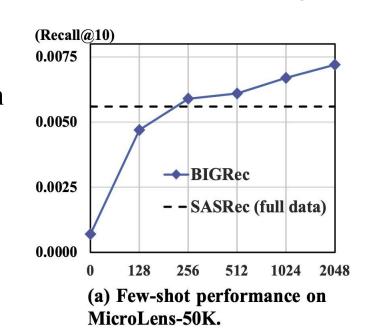
Cost: Training

One exploration: Data-efficient training

- ☐ Fine-tuning LLM is necessary
 - ☐ LLMs are not particularly trained on recommendation data
- \square LLM fine-tuning is expensive, *e.g.*, high computational costs, time-consuming
- ☐ Few-shot fine-tuning is a promising solution
- ☐ Data pruning for efficient LLM-based recommendation
 - ☐ identify representative samples tailored for LLMs

Statistics from Tiktok 1 (per day)

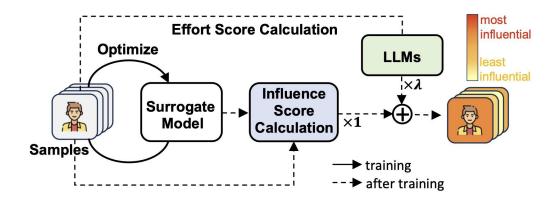
- New videos: ~160M
- New interactions: ~942B



Cost: Training

One exploration: Data-efficient training

- ☐ Two objectives for data pruning
 - high accuracy: select the samples that can lead to higher performance -> influence score
 - high efficiency: emphasize the low costs of the data pruning process
 - □ surrogate model to improve efficiency
 - effort score to bridge between surrogate model and LLMs



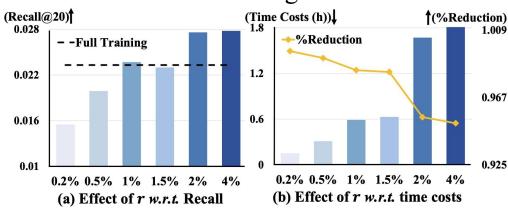
☐ Experimental results

 \Box fine-tune with 1024 samples

			Games		
	R@10↑	R@20↑	N@10↑	N@20↑	Time↓
Full	0.0169	0.0233	0.0102	0.0120	36.87h
DEALRec	0.0181	0.0276	0.0115	0.0142	1.67h
% Improve.	7.10%	18.45%	12.75%	18.33%	-95.47%

 \Box Increasing samples from 0.2% to

4% of all training data



Cost: Inference

One solution: distillation

Distill LLM's knowledge to smaller models and utilize small models for inference

• Work#1: distill recommendation results

Dataset	Model	HR@20	NDCG@20	Inference time
	DROS	0.0473	0.0267	1.8s
Games	BIGRec	0.0532	0.0341	$2.3 \times 10^4 s$
	Gain	+12.47%	+27.72%	$-1.3 \times 10^6 \%$
	DROS	0.0231	0.0144	1.6s
Toys	BIGRec	0.0420	0.0207	1.1×10^4 s
	Gain	+81.82%	+43.75%	$-6.8 \times 10^{5}\%$

Dataset	Condition	Relative Ratio	
Comos	BIGRec > DROS	53.90%	
Games	BIGRec < DROS	46.10%	
MovieLens	BIGRec > DROS	40.90%	
MovieLens	BIGRec < DROS	59.10%	
Torra	BIGRec > DROS	66.67%	
Toys	BIGRec < DROS	33.33%	

The inference latency of BIGRec far exceeds that of DROS.

BIGRec does not always outperform DROS.

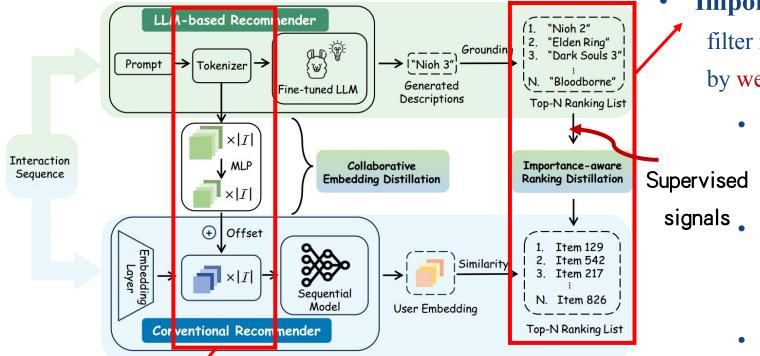
- **□ Distillation challenges**:
 - ☐ 1) The teacher's knowledge may not always be reliable.
 - 2) The divergence in semantic space poses a challenge to distill the knowledge from embeddings.

Cost: Inference

One solution: distillation

Distill LLM's knowledge to smaller models and utilize small models for inference

• Work#1: distill recommendation results



Collaborative Embedding Distillation

integrate knowledge from teacher embeddings with student's

Importance-aware Ranking Distillation

filter reliable and student-friendly knowledge by weighting instances

Confidence of LLMs

The distance between the generated descriptions with the target item

Teacher-Student Consensus

The items recommended by both teacher and student are more likely to be positive

Ranking Position

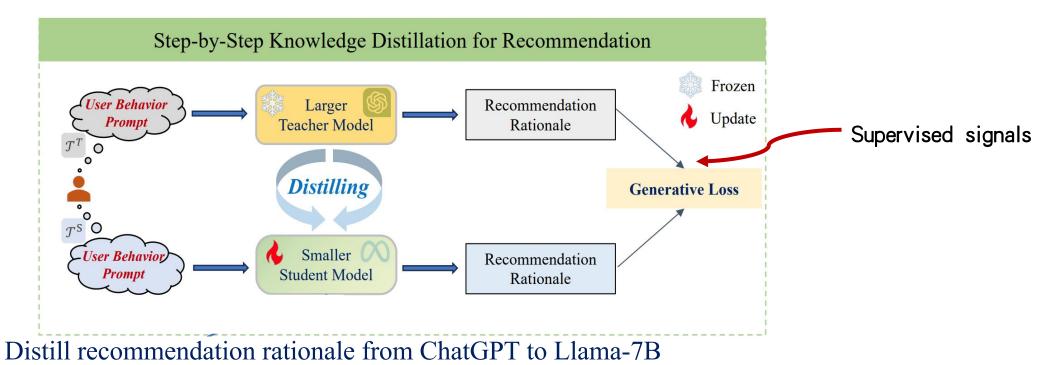
Higher ranked items by teachers are more reliable

Cost: Inference

One solution: distillation

Distill LLM's knowledge to smaller models and utilize small models for inference

• Work#2: distill recommendation rationales



Combining the rationale embedding and item description embedding for prediction

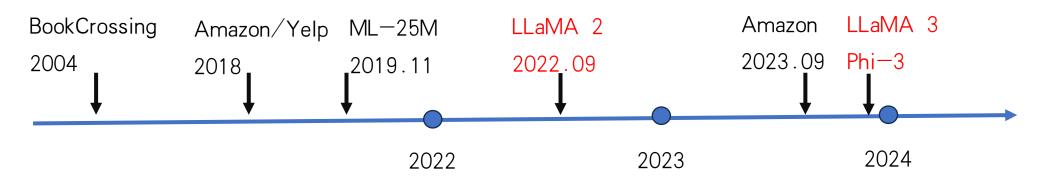
Empowering recommendation with rationale embedding

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
 - Modeling
 - Cost
 - Evaluation
- Future Direction & Conclusions

Evaluation: Data Issues

- ☐ Challenge#1: Lack of data for evaluation
 - ☐ Most of benchmarks are proposed ahead of pre-training stage of LLMs, e.g., ChatGPT, LLaMA.



- ☐ The information of recommendation datasets (e.g., reviews,) may be include in LLMs.
- ☐ Existing works usually did not discuss this.
- **□** Evaluations on the data that is not include in pretraining data of LLMs.

Evaluation: Data Issues

☐ Challenge#1: Lack of data for evaluation

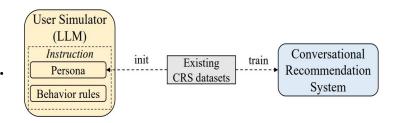
- ☐ Insufficient features
 - ☐ Lack of raw feature
 - ☐ Anonymous (e.g., just feature ID)
 - ☐ Lack of content (e.g., video content)
 - ☐ Currently, many works just utilize titles

- Underutilization of LLM capabilities;
- Underassessment of the effectiveness of LLM4Rec

- Data homogeneity
 - content homogeneity:mostly from E-commerce platform /
 - entertaining content or places
 - □ biased user distributions: mostly from China and U.S.
 - Not comprehensive evaluation
 - Biased evaluation

Evaluation: Interactive RecSys

- ☐ Challenge#2: Evaluate interactive recommendation
 - **□** Conversational recommendation
 - provide personalized recommendation via multi-turn dialogs in natural language
 - focus on conversational quality and recommendation quality
 - Issues of traditional evaluation:
 - Simulated users are overly simplified representations of human users
 - Conversations are often vague about the user preference, but not focus on exactly match the ground-truth items
 - Evaluation protocol is based on fixed conversations, but the conversation could be diverging.
 - New evaluation: simulation with LLM-based agents?
 - Challenges: how to design simulators is still an open problem.



Evaluation: Interactive RecSys

- ☐ Challenge#2: Evaluate interactive recommendation
 - **□** Long-term recommendation
 - ☐ Multi-turn user-system interactions
 - Focus on long-term user engagement, e.g., user retention
 - ☐ How to evaluate long-term engagement is a big challenge.
 - ☐ We have not feedback about the unseen interaction trajectory
 - Evaluation with agent-based simulator is a potential solution

Outline

- Introduction
- Background: LM & LM4Rec
- Development of LLMs
- Progress of LLM4Rec
- Open Problems
- Future Direction & Conclusions

Progress of LLM4Rec

Three dimensions:

Metrics

From accuracy to trustworthiness such as privacy, fairness, etc.

Information modalities

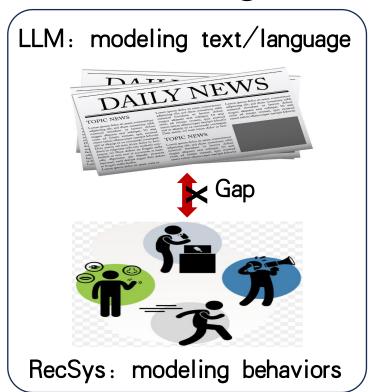
From the text modality to
multiple modalities

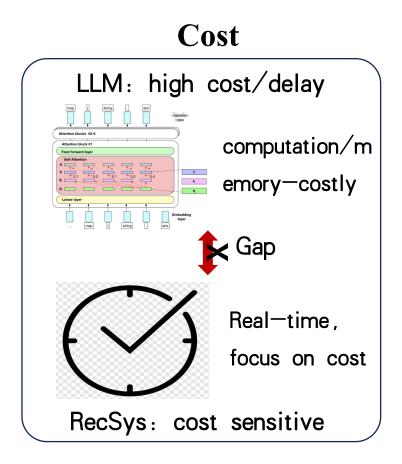
How to utilize LLMs
In-context learning
Tuning
Agent

Open Problems

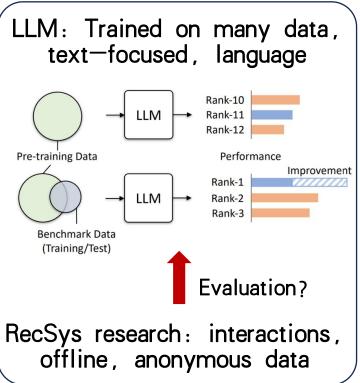
Three aspects:

Modeling





Evaluation



☐ Generative AI for recommendation

- Personalized content generation, including item repurposing and creation.
 - Application: News, fashion products, micro-videos, virtual products in games, etc.

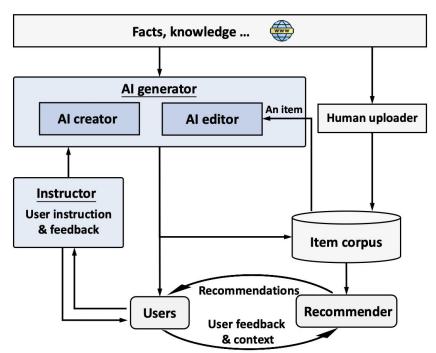


Figure 4: A demonstration of GeneRec. The instructor collects user instructions and feedback to guide content generation. The AI editor aims to repurpose existing items in the item corpus while the AI creator directly creates new items.

Instructor:

 Pre-process user instructions and feedback to guide the content generation of the Al generator.

Al Editor:

- Refine or repurpose existing items according to personalized user instructions and feedback.
- External facts and knowledge might be used for content generation.

Al Creator:

 Generate new items based on personalized user instructions and feedback.

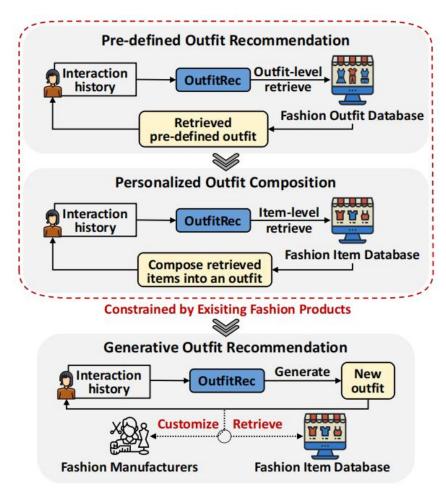
Al Checker:

- Generation quality checks.
- Trustworthiness checks.

Applicable to many domains, including images, micro-videos, movies, news, books, and even products (for manufacture).

☐ Generative Recommendation in Fashion Domain

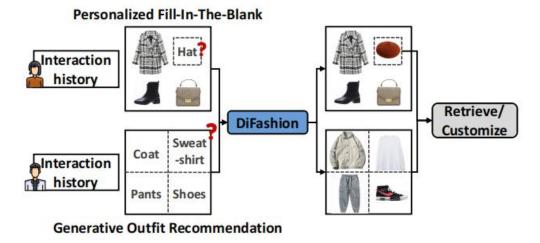
The Evolution of Fashion Outfit Recommendation



Generative Outfit Recommendation

Objective: generating a set of new personalized fashion products to compose a visually compatible outfit catering to users' fashion tastes.

Practical Implementation: retrieve or customize



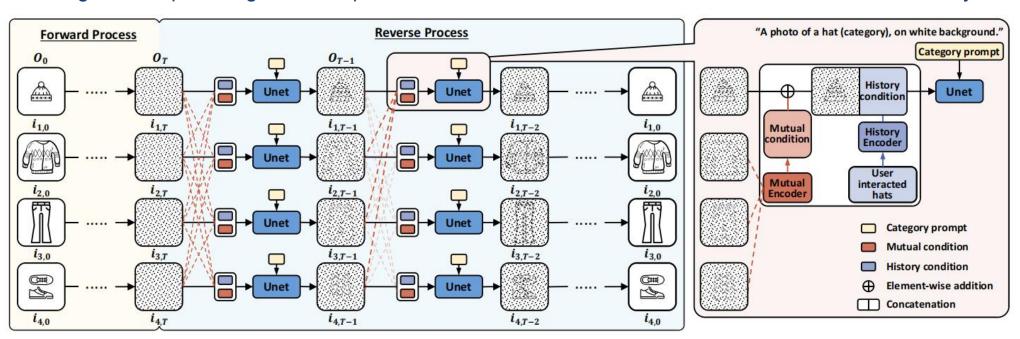
☐ Generative Recommendation in Fashion Domain

Overview of DiFashion

- Forward Process: gradually corrputing outfit images with Gaussian noise
- Reverse Process: incorporating three conditions to guide the parallel generation process

Three criteria of GOR

- High Fidelity: category prompts & classifier-free guidance
- Compatibility: mutual encoder
- **Personalization**: history encoder



☐ Experiments

- Datasets: iFashion, Polyvore-U
- Baselines: generative models, retrieval-based models
- ☐ Tasks: personalized Fill-In-The-Blank (PFITB), GOR
- Evaluation
 - Quantitative Evaluation
 - Human-involved Qualitative Evaluation

Table 5: The haman involved qualitative evaluation results, where " \pm " denotes 95% confidence interval. DiFashion is consistently preferred ($\geq 50\%$) over the baselines across all evaluation metrics for both PFITB and GOR tasks.

DiFashion		Fidelity	Compatibility	Personalization	
PFITB	SD-v1.5	64.08 ^{±3.08} %	60.44 ^{±2.42%}	68.32 ^{±3.47} %	
Priid	SD-v2	70.04 ^{±4.16} %	$57.48^{\pm 1.90\%}$	$66.40^{\pm 3.39\%}$	
GOR	SD-v1.5	61.56 ^{±1.93} %	61.20 ^{±2.00%}	60.80 ^{±2.57} %	
	SD-v2	66.52 ^{±2.15} %	$60.56^{\pm1.88\%}$	$63.72^{\pm 1.95\%}$	

PFIT

Recommender for Agent Platform

- Existing agent platforms such as GPTs (OpenAI), Poe (Quora), and DouBao (ByteDance) possess a vast number of LLM-based agents.
- How to recommend LLM-based Agent to the user?

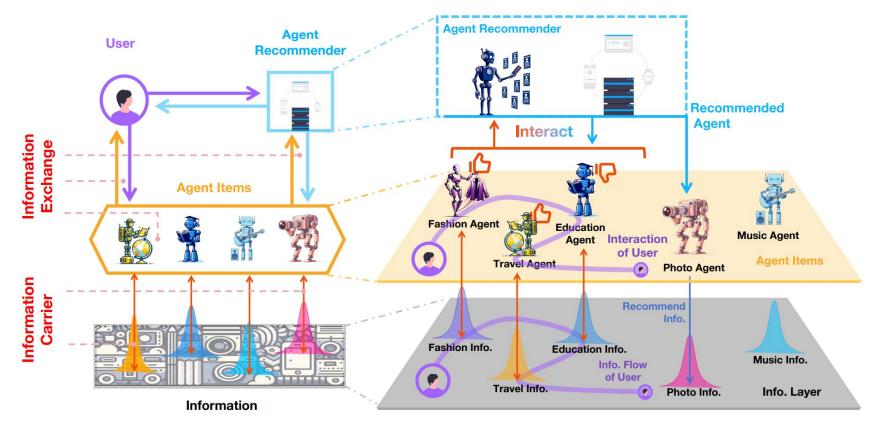
Different from Items in Traditional Recommender System, LLM-based Agent holds the potential to extend the format of information carriers and the way of information exchange.

- -> Formulate **new Information System**
- -> **New Rec paradigm** Rec4Agentverse

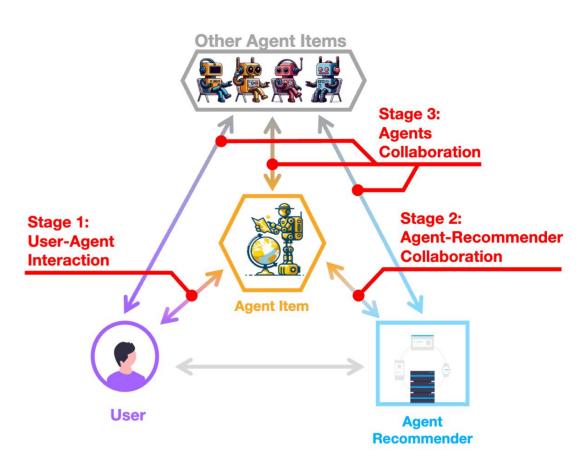
User Travel Agent

Rec4Agentverse

In Rec4Agentverse, the relationship between user, Agent Item and Agent Recommender may be much closer. Agent Recommender can collaborate with Agent Items to affect the information flow of users and offer personalized information services.



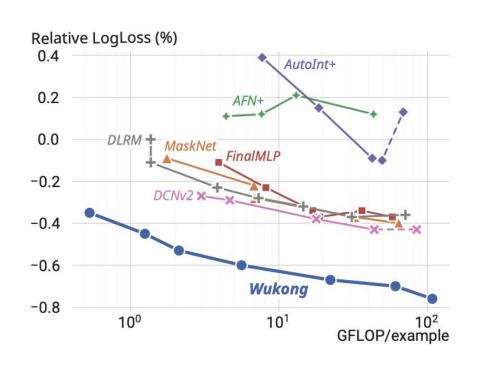
Rec4Agentverse

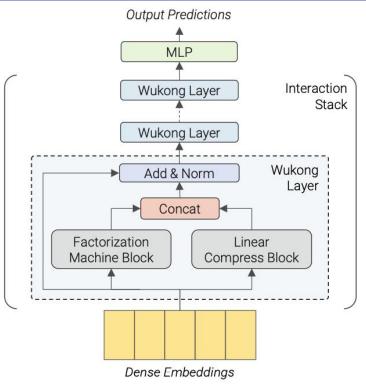


Three stages of Rec4Agentverse. The bidirectional arrows depicted in the Figure symbolize the flow of information.

- User-Agent interaction stage:
- Information flows between the user and Agent Item.
- Agent-Recommender Collaboration stage: Information flows between Agent Item and Agent Recommender.
- Agents Collaboration stage:
 Information flows between Agent Items.

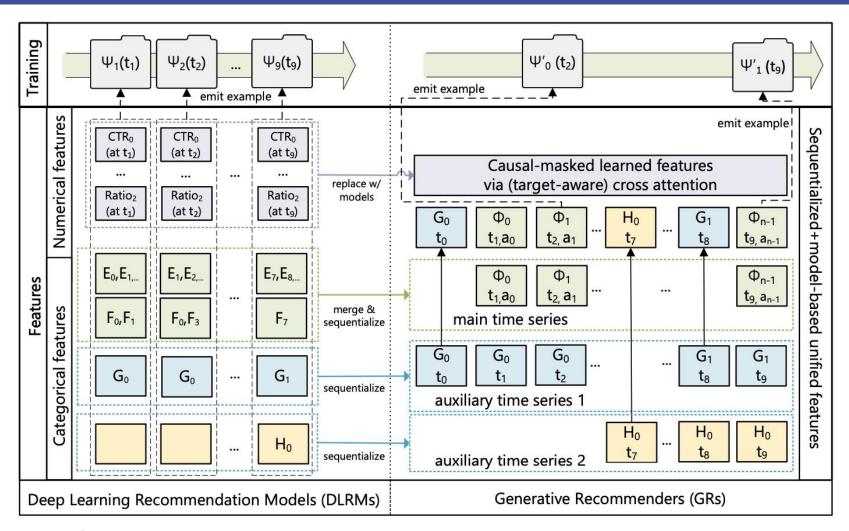
Wukong



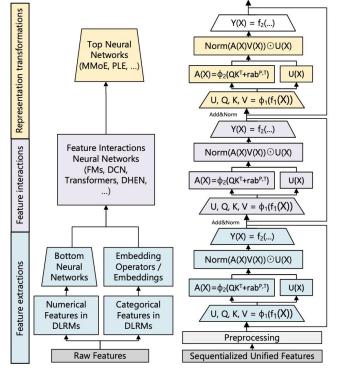


- ☐ The scaling properties of the CTR model have been verified, showing excellent performance on both internal and open-source data.
 - Demonstrates the possibility of increasing the size of CTR models through clever structural design and appropriate scaling settings
- ☐ Exhibits better scaling performance than previous models.

Action Speaker Louder than Words | This is a second of the second of



Task		Specification (Inputs / Outputs)
Ranking	x_i s y_i s	$\Phi_0, a_0, \Phi_1, a_1, \dots, \Phi_{n_c-1}, a_{n_c-1} $ $a_0, \varnothing, a_1, \varnothing, \dots, a_{n_c-1}, \varnothing$
Retrieval	$\frac{x_i s}{x_i s}$	$(\Phi_0,a_0),(\Phi_1,a_1),\dots,(\Phi_{n_c-1},a_{n_c-1})$
	y_i s	$\Phi_1', \Phi_2', \dots, \Phi_{n_c-1}', \varnothing$ $(\Phi_i' = \Phi_i \text{ if } a_i \text{ is positive, otherwise } \varnothing)$

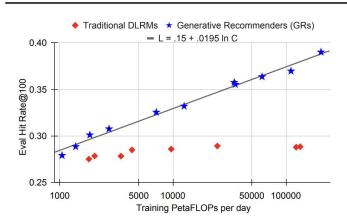


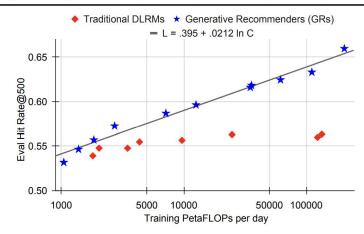
- Generative Recommender
- New model architecture and feature processing methods.

Action Speaker Louder than Words | Table |

Table 4. Evaluations of methods on public datasets in multi-pass, full-shuffle settings.

	Method	HR@10	HR@50	HR@200	NDCG@10	NDCG@200
ML-1M	SASRec (2023)	.2853	.5474	.7528	.1603	.2498
	HSTU	.3097 (+8.6%)	.5754 (+5.1%)	.7716 (+2.5%)	.1720 (+7.3%)	.2606 (+4.3%)
	HSTU-large	.3294 (+15.5%)	.5935 (+8.4%)	. 7839 (+ 4.1 %)	.1893 (+18.1%)	.2771 (+10.9 %)
ML-20M	SASRec (2023)	.2906	.5499	.7655	.1621	.2521
	HSTU	.3252 (+11.9%)	.5885 (+7.0%)	.7943 (+3.8%)	.1878 (+15.9%)	.2774 (+10.0%)
	HSTU-large	.3567 (+22.8%)	.6149 (+11.8%)	.8076 (+5.5%)	.2106 (+30.0%)	.2971 (+17.9%)
Books	SASRec (2023)	.0292	.0729	.1400	.0156	.0350
	HSTU	.0404 (+38.4%)	.0943 (+29.5%)	.1710 (+22.1%)	.0219 (+40.6%)	.0450 (+28.6%)
	HSTU-large	.0469 (+60.6%)	.1066 (+46.2%)	.1876 (+33.9%)	.0257 (+65.8%)	.0508 (+45.1%)





Better performance than traditional models on in-house data and

open source data (Above two table)

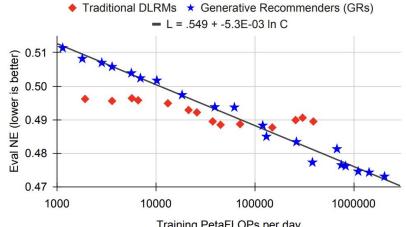
Far more scaling ability than traditional DLRMs

Table 6. Offline/Online Comparison of Retrieval Models.

Methods	Offline HR@K		Online metrics	
Methous	K=100	K = 500	E-Task	C-Task
DLRM	29.0%	55.5%	+0%	+0%
DLRM (abl. features)	28.3%	54.3%	_	
GR (content-based)	11.6%	18.8%	_	
GR (interactions only)	35.6%	61.7%	_	
GR (new source)	36.9%	62.4%	+6.2%	+5.0%
GR (replace source)			+5.1%	+1.9%

Table 7. Offline/Online Comparison of Ranking Models.

Methods	Offlin	e NEs	Online metrics	
Methods	E-Task	C-Task	E-Task	C-Task
DLRM	.4982	.7842	+0%	+0%
DLRM (DIN+DCN)	.5053	.7899	_	_
DLRM (abl. features)	.5053	.7925		_
GR (interactions only)	.4851	.7903	_	_
GR	.4845	.7645	+12.4%	+4.4%



Training PetaFLOPs per day

Large Behaviour Model

- ☐ What we have know?
 - □ Scaling Law remains effective on industrial-scale data when combined with an appropriate architecture in the context of recommendation scenario.
 - ☐ When the model is large enough and captures high-order information, it exhibits a certain generalization ability across scenes and domains.
 - ☐ Generative recommender is more stronger than traditional methods
- What we haven't know?
 - ☐ How to integrate world knowledge, and whether it can be combined with LLMs.
 - In addition to features and simple action, how do we model more complex short-term and long-term user behaviors? And how is the scalability of these behaviors manifested?
 - ☐ How to model the shared information between items/users and items/users?

Embed Social Values into LLMRec

- Social media AI (RecSys) already embed values --- maximize each user's individual experience---as predicted through likes
- It can harm societal values --- wellbeing, social capital, mitigating harm to minoritized groups, democracy, and maintaining pro-social norms.
- Col Social sciences craft rigorous definitions & measurement of values

 \rightarrow

Engineering translates the definitions into replicable AI models

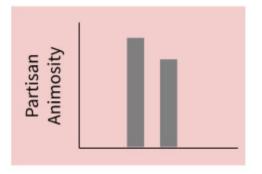
the behavioral effects of the AI models

Opposition to bipartisanship is defined as "resistance to cross-partisan collaboration".

Ratings may depend on whether the following factors exist in the following message: [...]

Code whether the following factors exist in the following message: [...]

Cronbach's α with experts: .7



Thanks for Your Listening!

Tutorial on Large Language Models for Recommendation:

Progresses and Future Direction

Find our slides at

https://generative-rec.github.io/tutorial/

Survey: A Survey of Generative Search and Recommendation in the Era of Large Language Models

https://arxiv.org/pdf/2404.16924

Follow our WeChat account "智荐阁"!

Survey

智荐阁

Evaluation & Benchmark

☐ The immense ability of LLMs may exceed the capabilities of traditional recommendation benchmark!

- ☐ The LLM may recommend items that are not in the dataset but are in line with user's real preference, how will it be evaluated?
- ☐ The LLM may recommend non-existent but meaningful items that meet the user's preferences. How will this situation be evaluated?

Evaluation & Benchmark

☐ The immense ability of LLMs may exceed the capabilities of traditional recommendation benchmark!

