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1. Introduction
• 1.1 Multimodal Recommendation
• The ubiquity of the extensive corpus and the Matthew effect inevitably

engenders the sparsity issue in real-world recommendation systems.
• Multimodal recommendation is proposed to use the additional multi-modal

information to enhance the item representation modeling.
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1. Introduction
• 1.2 Diffusion Model
• Diffusion model is inspired by the non-equilibrium statistical physics and has

demonstrated exceptional performance in CV and NLP.
• The classical DM methods typically consists of the Forward Process and the

Reverse Process to inject the informative uncertainty into the representation.
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2. Motivation Analysis

• 2.1 Challenges of Multi-modal recommenders
• How to fully leverage the multi-modal knowledge from pretrained features?
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2. Motivation Analysis
• 2.2 Existing DM-based recommender paradigm
• DiffRec[1] : Reducing the added noises into the forward process to retain globally 

analogous yet personalized collaborative information in a denoising manner.
• LD4MRec [2] : Leveraging the continuous multi-modal representations for 

predicting discrete interaction probabilities.
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(a) DiffRec[1]

[1] Wenjie Wang, et al., Diffusion Recommender Model, SIGIR 2023
[2] Penghang Yu, et al., LD4MRec: Simplifying and Powering Diffusion Model for Multimedia Recommendation

(b) LD4MRec[2]
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3. Multimodal Conditioned Diffusion Model for 
Recommendation framework 
• 3.2 Overall Structure

• MRD: Reducing the deviation between modality-aware features and the collaborative information and 
improve the modeling of item representation

• DGD : Denoising the user-item interaction graph accurately through the diffusion-aware item representations
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4. Experiments
• 4.1 Effectiveness of MCDRec
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① MCDRec significantly outperforms all the baselines across all metrics and datasets.② The improvements are larger with smaller k.③ MCDRec achieves the most substantial improvement over BM3 and obtains peak
results over FREEDOM.



4. Experiments
• 4.2 Ablation Study of MCDRec
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① The simple fusion of multi-modal information and collaborative signals (BM3+MK) may
introduce additional bias, hindering accurate item representation modeling.

② MRD leverages the multi-modal information to conditionally guide the diffusion process,
introducing the information uncertainty of each modality into item representations.

③ DGD can utilizing diffusion knowledge to guide the graph denoising process.④ MCDRec achieves the best performance across all datasets and metrics with MRD
and DGD.



4. Experiments
• 4.3 Visualization of MCDRec 
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① In the initial state, the intrinsic aggregation
of the pre-trained representations from
the same modality poses a challenge for
the subsequent recommender.

② With the training of MRD, we progressively
achieve consistent modeling of multi-
modal preferences from the same user.

③ Multimodal item representations from the
same user exhibit the significant clustering
distributions in the end.
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5. Conclusion

pConclusion
Ø We propose a novel Multimodal Conditioned Diffusion Model for Recommendation

(MCDRec), which is able to co-model multi-modal guidance and diffusion guidance
to enhance the performance of existing multi-modal recommenders.

ØThe proposed MRD and DGD in MCDRec are effective, model-agnostic and precisely
capture users' modality-aware personalized preferences.

ØMCDRec achieves significant and consistent improvements on different datasets
and base multimodal recommenders.
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pFuture Direction
ØExploit the fine-grained modeling of multi-modal representations in DM.
ØValidate its effectiveness in more challenging scenarios such as multimodal

sequential recommendation and cross-domain multimodal recommendation.
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