

Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation

Xinyu Lin¹, Wenjie Wang¹, Yongqi Li², Fuli Feng³, See-Kiong Ng¹, and Tat-Seng Chua¹ ¹National University of Singapore, ²The Hong Kong Polytechnic University, ³University of Science and Technology of China

{xylin1028,wenjiewang96,liyongqi0,fulifeng93}@gmail.com,{seekiong,dcscts}@nus.edu.sg

2024.05.13 Presenter: Xinyu Lin 2nd Workshop on Recommendation with Generative Models

- Motivation
- TransRec
- Experiments
- Future Work

• LLM-based recommenders

• Gap between item space and language space

- **D** Existing work for item indexing
 - ID-based identifier

I find the purchase history list of user_15466: 4110 -> 4467 -> 4468 -> 4472 I wonder what is the next item to recommend to the user. Can you help me decide?

lack of semanticspoor generalization ability

description-based identifier

Instruction Input						
Instruction:	Given ten movies that the user watched re cently, please recommend a new movie that the user likes to the user.					
Input:	The user has watched the following movies before: "Traffic (2000)", "Ocean's Eleven (2001)", "Fargo (1996)"					
Instruction Output						
Output:	"Crouching Tiger, Hidden Dragon (Wu hu zang long) (2000)"					

inadequate distinctiveness
Inconsistent with interactions

Shijie Geng, et al. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys'22
 Bao Keqin et al. " A Bi-Step Grounding Paradigm for Large Language Models in Recommendation Systems" arXiv 2023.

D Existing work for generation grounding

Limitations

Item Indexing

• *ID-based identifier*: lack of semantics, poor generalization.

<u>Criteria</u>

Identifier:

- distinctiveness
- semantics

• *Description-based identifier*: inadequate distinctiveness

Generation Grounding

• out-of-corpus identifiers

Generation:

• constrained generation [1,2]

depend heavily on first token

• **position-free** constrained generation

- Motivation
- TransRec
- Experiments
- Future Work

TransRec

A multi-facet **Trans**ition paradigm for LLM-based **Rec**ommendation

- Item Indexing: multi-facet identifier
- Instruction data construction
- Generation Grounding

ID 15826 (Distinctiveness) Title Wilson NBA Series Indoor and Outdoor Basketballs Attribute Sports
(Semantics)

User's historical interactions in natural language in three facets

ID 15826; 8792; 513; 7382; 9014;

Title Wilson NBA Series Indoor and Outdoor Basketballs; LIT48 Advancourt Base Lifestyle Sneakers; ...; Logitech 910-005604 Pebble M350 Wireless Keyboard;
 Attribute Sports; Shoe; Headphone & Earphones; ...; Electronics;

)	Instruction
THE WEB CONFERENCE	Task Description	User's Historical Interactions (a)	(b)

TransRec

A multi-facet transition paradigm for LLM-based rec

- **Item indexing**
- **Instruction data construction** •
- **Generation grounding**

□ A multi-facet transition paradigm for LLM-based recommendation

- Item indexing
- Instruction data construction
- Generation grounding

User's Historical Interactions in Three Facets { } { } { } { } Identifier Sets in Three Facets

- Motivation
- TransRec
- Experiments
- Future Work

Experiments

RQ1: How does our proposed TransRec perform compared to both traditional and LLM-based recommenders?

G Full training

		Beauty			Toys				Yelp				
	Model	R@5	R@10	N@5	N@10	R@5	R@10	N@5	N@10	R@5	R@10	N@5	N@10
traditional	MF	0.0294	0.0474	0.0145	0.0191	0.0236	0.0355	0.0153	0.0192	0.0220	0.0381	0.0138	0.0190
	LightGCN	0.0305	0.0511	0.0194	0.0260	0.0322	0.0508	0.0215	0.0275	0.0255	0.0427	0.0163	0.0218
	SASRec	0.0380	0.0588	0.0246	0.0313	0.0470	0.0659	0.0312	0.0373	0.0183	0.0296	0.0116	0.0152
	DCRec	0.0452	0.0635	0.0327	0.0385	0.0498	0.0674	0.0335	0.0406	0.0207	0.0328	0.0115	0.0154
	ACVAE	0.0503	0.0710	0.0356	0.0422	0.0488	0.0679	0.0350	0.0411	0.0211	0.0356	0.0127	0.0174
Í	P5	0.0059	0.0107	0.0033	0.0048	0.0031	0.0069	0.0022	0.0034	0.0039	0.0062	0.0024	0.0031
LLM-based	SID	0.0350	0.0494	0.0254	0.0301	0.0164	0.0218	0.0120	0.0139	0.0218	0.0332	0.0161	0.0187
	SemID+IID	0.0290	0.0429	0.0200	0.0245	0.0145	0.0260	0.0069	0.0123	0.0196	0.0304	0.0141	0.0160
	CID+IID	0.0484	0.0703	0.0337	0.0412	0.0169	0.0276	0.0104	0.0154	0.0265	0.0417	0.0184	0.0233
1	TIGER	0.0377	0.0567	0.0249	0.0310	0.0278	0.0426	0.0176	0.0223	0.0183	0.0298	0.0119	0.0156
	TransRec-B	0.0504	0.0735*	0.0365*	0.0450*	0.0518*	0.0764*	0.0360*	0.0420*	0.0354*	0.0457*	0.0262*	0.0306*

TransRec-B: TransRec instantiated on BART

- **Superior performance** compared to both **traditional** models and **LLM-based** models.
- **The superiority of TransRec** is attributed to 1) the utilization of multi-facet identifiers to simultaneously achieve semantics and distinctiveness. 2) the constrained and position-free generation for in-corpus item generation and mitigate the over-reliance on initial tokens.

Experiments

- **G** Strong generalization ability
 - Few-shot training
 - warm- and cold-start testing

		Wa	rm	Cold			
N-shot	Model	R@5	N@5	R@5	N@5		
	LightGCN	0.0205	0.0125	0.0005	0.0003		
	ACVAE	0.0098	0.0057	0.0047	0.0026		
1024	CID+IID	0.0100	0.0066	0.0085	0.0071		
	TransRec-B	0.0042	0.0028	0.0029	0.0021		
	TransRec-L	0.0141	0.0070	0.0159	0.0097		
2048	LightGCN	0.0186	0.0117	0.0005	0.0004		
	ACVAE	0.0229	0.0136	0.0074	0.0044		
	CID+IID	0.0150	0.0101	0.0078	0.0062		
	TransRec-B	0.0057	0.0031	0.0045	0.0026		
	TransRec-L	0.0194	0.0112	0.0198	0.0124		

* The bold results highlight the superior performance compared to the best LLMbased recommender baseline.

- **Remarkable generalization ability** of LLMs with vase knowledge base, especially on cold-start recommendation under limited data.
- On user side, TransRec significantly **improves the performance of sparse users** with fewer interactions.

- Motivation
- TransRec
- Experiments
- Future Work

Following this direction, many promising ideas deserve further exploration:

- although incorporating ID, title, and attribute is effective, it is worthwhile to automatically construct multi-facet identifiers to reduce the noises in natural descriptions;
- it is meaningful to devise better strategies for grounding modules, to effectively combine the ranking scores from different facets, such as using neural models in an end-to-end learning manner.

Thanks for Your Listening!

Contact: xylin1028@gmail.com