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approach, one can enable LLMs to capture and process richer infor-
mation from the real world [4]. In the line of the modality ground-
ing [22, 29, 53], individuals endeavor at introducing information of
other modalities during both the training and inference phases of
LLMs, leading to the capability of processing multimodal inputs, as
exempli�ed by Vicuna [7, 60], MiniGPT4 [61]. However due to the
requirements of a large amount of data and resources [44], within
this paper, we have not accorded precedence to this grounding
strategy but leave it as a future work. The latter aims at ground-
ing the LLM to a speci�c contextual scenario, ensuring that the
results generated by the model are associated with the task rather
than detached from the scenario [1]. In practice, people achieve
this goal via instruction-tuning on domain-speci�c data or utilizing
customized prompts to steer the LLM [44]. Where in the recom-
mender domain, owing to its gap with the generative task itself –
we necessitate recommending an item that truly exists, hence we
apply a step grounded in the generation output to the real world to
ful�ll the recommendation.

3 BIGREC
In this section, we introduce an elementary implementation of
BIGRec with two grounding steps.

3.1 Preliminary
De�nation. To better understand the grounding paradigm, we

�rst give de�nitions of the following key phrases:
• Language Space. This space prior to the grounding paradigm

encompasses all conceivable language sequences that an LLM
could generate, such as the statement, “As anAI languagemodel, I
don’t have access to your personal preferences ...”. It is not feasible
to utilize this space directly for generating recommendations
due to its vast and varied nature.

• Recommendation Space. This is a sub-space within the lan-
guage space that includes a wide range of entities that ful�ll the
user’s preferences. These entities can represent both actual and
imaginary items in a particular domain. However, it is important
to note that recommending purely imaginary entities may not be
appropriate. For instance, suggesting “IronMan (Sichuan dialect)”
as a recommendation would be infeasible.

• Actual Item Space. The actual item space contains only the
actual items in the recommendation space. Recommending items
from this actual item space is necessary. For example, in the
context of movie recommendations, the recommended items
must be selected from the available movies on the platform.
To �ne-tune LLMs for recommendation, we propose the BIGRec

paradigm with two grounding steps. Firstly, we ground the output
of LLMs from the language space to the recommendation space
for a speci�c recommendation task. Secondly, we ground it from
the recommendation space to the actual item space, enabling the
recommendations of actual items to users. To demonstrate the capa-
bilities of our paradigm, we present a simple implementation, which
illustrates the potential and possibilities of this BIGRec paradigm.

3.2 Implementation
In this subsection, we describe how we implement the BIGRec
paradigm for recommendations.

Table 1: Example of the instruction-tuning data for the step
of grounding to the space.

Instruction Input
Instruction: Given ten movies that the user watched re-

cently, please recommend a new movie that
the user likes to the user.

Input: The user has watched the following movies
before: “Tra�c (2000)”, “Ocean’s Eleven
(2001)”, ... “Fargo (1996)”

Instruction Output
Output: “Crouching Tiger, Hidden Dragon (Wu hu

zang long) (2000)”

3.2.1 Step 1: Grounding Language Space to Recommendation Space.
In accordance with the methodology proposed in [3], we perform an
instruction-tuning phase on the alpaca self-instruct data [39] using
LLaMA [40]. Afterward, we conduct a recommendation-speci�c
instruction-tuning to restrict the output of LLMs from the language
space to the recommendation space. As demonstrated in Table 1,
we �ne-tune LLMs in a generative manner: given a user’s past
interactions with items, we ask LLMs to generate a new item as
the recommendation to the user. By �ne-tuning with such data, we
limit the LLMs’ output to the designated recommendation space
as instructed. However, due to the creativity of the LLM, it is hard
to ensure that the output of the LLMs will correspond to an actual
item that exists in the real world. Therefore, it is essential to ground
the output of LLMs to the actual item space.

3.2.2 Step 2: Grounding Recommendation Space to Actual ItemsS-
pace. In this subsection, we elaborate on how to anchor the recom-
mender space to the actual item space. Firstly, we align the output of
LLMs with real-world items based on the representations of LLMs
to implement a vanilla version of BIGRec. Then, we introduce statis-
tical information (e.g., popularity and collaborative information) to
accurately locate the actual items for recommendations. Speci�cally,
we extract the latent representation of the generated tokens and
the embedding of the actual items. Thereafter, we rank these actual
items by calculating the L2 distance between their embeddings. The
L2 distance is obtained as follows:

⇡8 = | |emb8 � oracle | |2, (1)

where emb8 denotes the embedding of the 8-th item and oracle
denotes the embedding of the outputs generated by the LLM.

Injection of Statistical Information. We then introduce how
we incorporate popularity information and collaborative informa-
tion into the grounding step. To inject popularity, we follow the idea
in PDA [57] and reweight the L2 distance in Eq. (1) by popularity.
In detail, we �rst calculate the popularity factor of each item from
the following equation:

8>>>>><
>>>>>:

⇠8 =
N8Õ

9 2I N 9 ,

%8 =
⇠8 � min9 2I {⇠ 9 }

max9 2I {⇠ 9 } � min9 2I {⇠ 9 }
,

(2)

where N denotes the set of user-item interactions in the training
data,N 9 denotes the number of observed interactions for item 9 in
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Criteria
Identifier:
• distinctiveness
• semantics

Generation:
• constrained generation [1,2]

Item Indexing
• ID-based identifier: lack of semantics, poor 

generalization.

• Description-based identifier: inadequate 
distinctiveness

Generation Grounding
• out-of-corpus identifiers

Limitations

depend heavily on first token

• position-free constrained generation

[1] Zhixuan Chu, et al. Leveraging Large Language Models for Pre-trained Recommender Systems. 2023 Arxiv
[2] Kai Mei, et al. LightLM: A Lightweight Deep and Narrow Language Model for Generative  Recommendation. 2023 Arxiv
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• Item Indexing: multi-facet identifier
• Instruction data construction
• Generation Grounding

ID 15826

Title Wilson NBA Series Indoor and Outdoor Basketballs
Attribute Sports

User’s historical interactions in natural language in three facets
ID 15826; 8792; 513; 7382; 9014;
Title Wilson NBA Series Indoor and Outdoor Basketballs; LIT48 Advancourt Base 
Lifestyle Sneakers; …; Logitech 910-005604 Pebble M350 Wireless Keyboard;
Attribute Sports; Shoe; Headphone & Earphones; …; Electronics;

(Semantics)

(Distinctiveness)

q A multi-facet Transition paradigm for LLM-based Recommendation

TransRec
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• Item indexing
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Recommendation Data

:

Instruction Data
Instruction Input: Given the user’s historical 
purchase in the following, what is the next 
possible item to be purchased by the user? 
135, 168, 2110, 8465, 15220.
Instruction Output: 3560.

(a)

LLMs

Instruction Output

Instruction Input

!!  

(b)

Optimization

0000 Task Description User’s Historical Interactions

Figure 3: Illustration of instruction tuning of LLMs. (a)
depicts the conversion from recommendation data to instruc-
tion data; (b) presents the optimization of LLMs based on the
instruction data.

where G and ~ denote the instruction input and output, respectively.
Speci�cally, as shown in Figure 3(a), the instruction input contains
the task description illustrating the recommendation task; and the
user’s historical interactions [8̃1D , 8̃2D , . . . , 8̃!�1D ] in natural language.
The instruction output is usually set to the identi�er of the next-
interacted item, i.e., ~ = 8̃!D .
• LLM optimization. Given the instruction data D8=BCAD2C , the
learnable parameters (\ 2 ⇥) of an LLM can be optimized by
minimizing the negative log-likelihood of instruction output ~
conditioned on input G :

min
\ 2⇥

{L\ = �
|~ |’
C=1

log %\ (~C |~<C , G)}, (1)

where ~C is the C-th token of ~, and ~<C represents the token
sequence preceding ~C .

2.2 Generation Grounding
After the instruction tuning, we can e�ectively leverage LLMs to
generate recommendations via the generation grounding step, i.e.,
generating token sequences by LLMs and grounding them to the
in-corpus items.
•Generation.Given an instruction inputG , which contains the task
description and the user’s historical interactions [8̃1D , 8̃2D , . . . , 8̃!D ], LLM-
based recommender autoregressively generates a token sequence
~̂ step by step via beam search. Formally, when beam size = 1, at
each time step C , we have

~̂C = argmax
E2V

%\ (E |~̂<C , G), (2)

where V is the token vocabulary of the LLM. The LLM-based
recommender keeps generating until it meets stopping criteria (e.g.,
~̂C is the stop token “EOS”).
• Grounding. The generated token sequence ~̂ in the language
space is then grounded to a set of existing identi�ers as recommen-
dations:

{8̃ |8̃ 2 Ĩ} Ground(~̂),
where Ground(·) is the grounding approach, such as exact match-
ing [15], and distance-based matching [1].

To sum up, bridging the item space and the language space for
building LLM-based recommenders involves two fundamental steps:

item indexing and generation grounding. Upon the two steps,
data reconstruction and instruction tuning are standard operations
to tune LLMs in the language space. However, existing work su�ers
from intrinsic limitations in the two steps. For item indexing,
existing ID-based identi�ers and description-based identi�ers either
lose semantics or lack adequate distinctiveness, leading to the un-
derutilization of rich knowledge in LLMs or losing salient features
crucial to the recommendation. For generation grounding, Eq. (2)
allows for generating any token from the LLMs’ vocabulary at each
step, potentially leading to out-of-corpus identi�ers. Additional
matching approaches [1] can mitigate the out-of-corpus issue,
which however is time-consuming (cf. Section 4.3.2).

3 METHOD
To strengthen LLM-based recommenders from the two crucial steps,
we propose a novel transition paradigm TransRec, which involves
multi-facet item indexing and generation grounding.

3.1 Multi-facet Item Indexing
To alleviate the intrinsic limitations of existing item indexing meth-
ods, we postulate two criteria for item identi�ers: 1) distinctiveness
to ensure the items are distinguishable from each other; and 2)
semantics to make full utilization of rich knowledge in LLMs,
enhancing the generalization abilities.

3.1.1 Multi-facet Identifier. Well meeting the above two criteria,
we propose multi-facet identi�ers for the item indexing step. In
particular, we simultaneously incorporate three facets to represent
an item from di�erent aspects:
• Numeric ID guarantees the distinctiveness among items. We
follow [15] to assign each item a unique numeric ID, denoted by %
(e.g., “3471”). By tuning over user-item interactions described by
unique IDs, LLMs are incentivized to align the numeric IDs with the
user-item interactions. In essence, items with similar interactions
are endowed with similar ID representations.
• Item title ensures rich semantics that can capitalize the wealth of
world knowledge in LLMs. An item title, denoted by ) , e.g., “Rouge
Coco Hydrating Creme Lipstick Chanel #432”, typically contains a
concise and descriptive name, conveying some general information
about the item.
• Item attribute serves as a complementary facet to inject
semantics, particularly in cases where item titles may be less
informative or unavailable. For an item that has multiple attributes
such as “Makeup, Eyes, Multicolor, Gluten Free”, we denote each
attribute as 0 and the complete attributes as � = [01,02, . . . ,0=].

In summary, for each item 8 in the recommendation data, we
can obtain the multi-facet identi�er 8̃ = {%,) ,�}. Based on the
multi-facet identi�ers, we then construct the instruction data in
language space for the instruction tuning of LLMs.

3.1.2 Data Reconstruction. As shown in Figure 4, we convert
each user’s interaction sequence SD = [81D , 82D , . . . , 8!D ] into instruc-
tion data in three facets, separately. For each facet, we construct
instruction input and output based on the user’s interaction
sequence. We present the full templates of task descriptions in
Appendix A.1, and mainly focus on the reconstruction of the user’s
historical interactions and the instruction output in the following.
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The instruction output is usually set to the identi�er of the next-
interacted item, i.e., ~ = 8̃!D .
• LLM optimization. Given the instruction data D8=BCAD2C , the
learnable parameters (\ 2 ⇥) of an LLM can be optimized by
minimizing the negative log-likelihood of instruction output ~
conditioned on input G :

min
\ 2⇥

{L\ = �
|~ |’
C=1

log %\ (~C |~<C , G)}, (1)

where ~C is the C-th token of ~, and ~<C represents the token
sequence preceding ~C .
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After the instruction tuning, we can e�ectively leverage LLMs to
generate recommendations via the generation grounding step, i.e.,
generating token sequences by LLMs and grounding them to the
in-corpus items.
•Generation.Given an instruction inputG , which contains the task
description and the user’s historical interactions [8̃1D , 8̃2D , . . . , 8̃!D ], LLM-
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~̂ step by step via beam search. Formally, when beam size = 1, at
each time step C , we have

~̂C = argmax
E2V

%\ (E |~̂<C , G), (2)

where V is the token vocabulary of the LLM. The LLM-based
recommender keeps generating until it meets stopping criteria (e.g.,
~̂C is the stop token “EOS”).
• Grounding. The generated token sequence ~̂ in the language
space is then grounded to a set of existing identi�ers as recommen-
dations:

{8̃ |8̃ 2 Ĩ} Ground(~̂),
where Ground(·) is the grounding approach, such as exact match-
ing [15], and distance-based matching [1].

To sum up, bridging the item space and the language space for
building LLM-based recommenders involves two fundamental steps:

item indexing and generation grounding. Upon the two steps,
data reconstruction and instruction tuning are standard operations
to tune LLMs in the language space. However, existing work su�ers
from intrinsic limitations in the two steps. For item indexing,
existing ID-based identi�ers and description-based identi�ers either
lose semantics or lack adequate distinctiveness, leading to the un-
derutilization of rich knowledge in LLMs or losing salient features
crucial to the recommendation. For generation grounding, Eq. (2)
allows for generating any token from the LLMs’ vocabulary at each
step, potentially leading to out-of-corpus identi�ers. Additional
matching approaches [1] can mitigate the out-of-corpus issue,
which however is time-consuming (cf. Section 4.3.2).

3 METHOD
To strengthen LLM-based recommenders from the two crucial steps,
we propose a novel transition paradigm TransRec, which involves
multi-facet item indexing and generation grounding.

3.1 Multi-facet Item Indexing
To alleviate the intrinsic limitations of existing item indexing meth-
ods, we postulate two criteria for item identi�ers: 1) distinctiveness
to ensure the items are distinguishable from each other; and 2)
semantics to make full utilization of rich knowledge in LLMs,
enhancing the generalization abilities.

3.1.1 Multi-facet Identifier. Well meeting the above two criteria,
we propose multi-facet identi�ers for the item indexing step. In
particular, we simultaneously incorporate three facets to represent
an item from di�erent aspects:
• Numeric ID guarantees the distinctiveness among items. We
follow [15] to assign each item a unique numeric ID, denoted by %
(e.g., “3471”). By tuning over user-item interactions described by
unique IDs, LLMs are incentivized to align the numeric IDs with the
user-item interactions. In essence, items with similar interactions
are endowed with similar ID representations.
• Item title ensures rich semantics that can capitalize the wealth of
world knowledge in LLMs. An item title, denoted by ) , e.g., “Rouge
Coco Hydrating Creme Lipstick Chanel #432”, typically contains a
concise and descriptive name, conveying some general information
about the item.
• Item attribute serves as a complementary facet to inject
semantics, particularly in cases where item titles may be less
informative or unavailable. For an item that has multiple attributes
such as “Makeup, Eyes, Multicolor, Gluten Free”, we denote each
attribute as 0 and the complete attributes as � = [01,02, . . . ,0=].

In summary, for each item 8 in the recommendation data, we
can obtain the multi-facet identi�er 8̃ = {%,) ,�}. Based on the
multi-facet identi�ers, we then construct the instruction data in
language space for the instruction tuning of LLMs.

3.1.2 Data Reconstruction. As shown in Figure 4, we convert
each user’s interaction sequence SD = [81D , 82D , . . . , 8!D ] into instruc-
tion data in three facets, separately. For each facet, we construct
instruction input and output based on the user’s interaction
sequence. We present the full templates of task descriptions in
Appendix A.1, and mainly focus on the reconstruction of the user’s
historical interactions and the instruction output in the following.
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Given the following purchase history of a user, what is 
the next possible item to be purchased by the user?  
15826; 8792; 513; 7382; 9014; || ID || +

Given the following purchase history of a user, what 
is the next possible item to be purchased by the user? 
Wilson NBA Basketballs; Advancourt Sneakers; …; 
Logitech K270 Wireless Keyboard; || title || +

Given the following attributes of purchase history of a 
user, what is the next possible attribute of item to be 
purchased by the user? Sports; Shoe; Headphone & 
Earphones; …;  Electronics; || attribute || +

ID

Instruction Input

23

Instruction Output

Title

Attribute Electronics

substring of “Logitech 
M360 Wireless Mouse”

Wireless Mouse

Figure 4: Illustration of the reconstructed data based on the
multi-facet identi�ers. The bold texts in black refer to the
user’s historical interactions.

To form the user’s historical interactions for the ID facet, we
convert the �rst ! � 1 items in SD to their numeric IDs, and
then separate each item with a semicolon. A sequence of ID-
facet identi�ers is denoted as “%1; %2; . . . ; %!�1”3. Likewise, we
can obtain the user’s historical interactions in the title and attribute
facets, referred to as “)1; )2; . . . ; )!�1”, and “�1; �2; . . . ; �!�1”,
respectively. As for the instruction output, for the ID facet, we use
the numeric ID of the last item in the user’s interaction sequence, i.e.,
%! . For the title facet, we utilize substrings C with arbitrary length
; 2 {1, . . . , |) |}, sampled from the title ) . This is to encourage
LLMs to generate from any positions that are possibly relevant
to the user’s interests. Here, for each user’s interaction sequence,
we sample  substrings of the last item’s title and construct  
instruction input-output pairs. Lastly, for the attribute facet, each
attribute 0 2 �! is independently used as one instruction output,
resulting in |�! | instruction input-output pairs. We denote the sets
of the instruction data from ID, title, and attribute facets as D�⇡ ,
DC8C;4 , and D0CCA , respectively. Moreover, to explicitly distinguish
di�erent facet data, we add a facet pre�x after the instruction input
as shown in Figure 4.

Based on the reconstructed instruction data D8=BCAD2C = D�⇡ [
DC8C;4 [D0CCA , the LLM is optimized via Eq. (1). Note that we only
employ a single LLM in TransRec for the instruction tuning.

3.2 Multi-facet Generation Grounding
After instruction tuning, the next step of TransRec is generation
grounding, which aims to deliver in-corpus item recommendations
based on the user’s historical interactions. The generation ground-
ing process is illustrated in Figure 5.

3.2.1 Position-free Constrained Generation. Out-of-corpus
identi�ers and over-reliance on the quality of initially generated
tokens are two critical problems in the generation process. To tackle
the issues, we consider LLMs to conduct position-free constrained
generation. Remarkably, we introduce FM-index [12], a specialized
data structure, that simultaneously supports position-free and
constrained generation.
• FM-index. FM-index is a special pre�x tree [33] that supports
search from any position. This capability enables FM-index to
1) �nd all valid successor tokens of a given token; and 2) allow

3For notation brevity, we omit the subscript D representing the user.

4

95, 7002, 3865, 
 3789, 6055, …

Position-free 
Constrained 
Generation

mouse pad, 
monitor, cables, 
wireless …

electronics, IT, 
accessories, …

LLMs

FM-index

Generated 
Identifiers

Aggregated 
Grounding

ID: 95 
Title: LG monitor 
Type C cables …
Attribute: Tech 
accessories …

ID: 4 
Title: Non-slip  
mouse pad …
Attribute: …

In-corpus 
Item Ranking

0.7

0.5

0.4

…

Item score = weighted sum of retrieved identifiers

User’s Historical Interactions in Three Facets

ID: 6055
Title: … 
Attribute: …

. ..
{ } { } { } Identifier Sets in Three Facets

Figure 5: Demonstration of the generation grounding step in
TransRec. Red, blue, and green denote the facets of ID, title,
and attribute, respectively.

the generation to start from any token of the valid identi�ers4.
Speci�cally, taking the item in Figure 2(a) as an example, we
�atten the multi-facet identi�er as “<IDS> 1023 <IDE> Urban Decay
Eyeshadow Palette Naked Heat <AS> Makeup <AE> <AS> Eyes
<AE>”, where “<IDS>, <IDE>, <AS>, <AE>” are the special tokens
that indicate the start and the end of each ID and �ne-grained
attribute, respectively. The �attened identi�er will then be stored in
the Wavelet Tree [16]. Given a start token (e.g., “BOS”) or a token
sequence, the FM-index can �nd a list of all possible successor
tokens in$ (+ log(+ )), where+ is the vocabulary size of the LLMs.
• Identi�er generation. Given the user’s historical interactions in
the format of instruction input as in Figure 4, TransRec generates
valid identi�ers in each facet via constrained beam search [10]
based on the FM-index. By constraining the starting token of
generation, e.g., “<IDS>”, and the ending token of generation, e.g.,
“<IDE>”, TransRec generates a set of valid ID identi�ers and attribute
identi�ers that belongs to the items (see Figure 5). Besides, TransRec
generates valid substrings of title identi�ers from any position
through FM-index, and we do not need to set special start and
end tokens for the title. The position-free generation ability of
LLMs is also enhanced by the instruction tuning process, where
substrings are set as the instruction output (cf. Section 3.1.1). We
follow [4] to keep track of all the partially decoded sequences and
obtain a set of generated identi�ers for each facet. We denote the
generated identi�ers for ID, title, and attribute facets as P6 , T6 , and
A6 , respectively.

3.2.2 Aggregated Grounding. To ground the generated iden-
ti�ers to the in-corpus items and also rank in-corpus items for
recommendations, we introduce an aggregated grounding module,
which contains intra-facet and inter-facet aggregations.
• Intra-facet aggregation.We �rst ground the generated identi-
�ers within each facet to the in-corpus items. Speci�cally, given the
generated identi�ers of one facet (e.g., T6), we can aggregate them to
the in-corpus item based on their coverage on each item’s identi�er
(e.g., T6 \) ). However, directly summing up the identi�er scores5
in the coverage set is infeasible due to the monotonic probability
decrease in autoregressive generation [4]. For example, “51770” will
have a smaller probability than “517”, thus hindering the accurate
4Other potential Trie algorithms in existing constrained generation merely allow
starting from the �rst token of valid identi�ers [7, 19].
5Here, the identi�er score is the probability of generated identi�er given by LLMs.
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• Item indexing
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substring of “Logitech 
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facet identi�ers is denoted as “%1; %2; . . . ; %!�1”3. Likewise, we
can obtain the user’s historical interactions in the title and attribute
facets, referred to as “)1; )2; . . . ; )!�1”, and “�1; �2; . . . ; �!�1”,
respectively. As for the instruction output, for the ID facet, we use
the numeric ID of the last item in the user’s interaction sequence, i.e.,
%! . For the title facet, we utilize substrings C with arbitrary length
; 2 {1, . . . , |) |}, sampled from the title ) . This is to encourage
LLMs to generate from any positions that are possibly relevant
to the user’s interests. Here, for each user’s interaction sequence,
we sample  substrings of the last item’s title and construct  
instruction input-output pairs. Lastly, for the attribute facet, each
attribute 0 2 �! is independently used as one instruction output,
resulting in |�! | instruction input-output pairs. We denote the sets
of the instruction data from ID, title, and attribute facets as D�⇡ ,
DC8C;4 , and D0CCA , respectively. Moreover, to explicitly distinguish
di�erent facet data, we add a facet pre�x after the instruction input
as shown in Figure 4.

Based on the reconstructed instruction data D8=BCAD2C = D�⇡ [
DC8C;4 [D0CCA , the LLM is optimized via Eq. (1). Note that we only
employ a single LLM in TransRec for the instruction tuning.

3.2 Multi-facet Generation Grounding
After instruction tuning, the next step of TransRec is generation
grounding, which aims to deliver in-corpus item recommendations
based on the user’s historical interactions. The generation ground-
ing process is illustrated in Figure 5.

3.2.1 Position-free Constrained Generation. Out-of-corpus
identi�ers and over-reliance on the quality of initially generated
tokens are two critical problems in the generation process. To tackle
the issues, we consider LLMs to conduct position-free constrained
generation. Remarkably, we introduce FM-index [12], a specialized
data structure, that simultaneously supports position-free and
constrained generation.
• FM-index. FM-index is a special pre�x tree [33] that supports
search from any position. This capability enables FM-index to
1) �nd all valid successor tokens of a given token; and 2) allow

3For notation brevity, we omit the subscript D representing the user.
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. ..
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Figure 5: Demonstration of the generation grounding step in
TransRec. Red, blue, and green denote the facets of ID, title,
and attribute, respectively.

the generation to start from any token of the valid identi�ers4.
Speci�cally, taking the item in Figure 2(a) as an example, we
�atten the multi-facet identi�er as “<IDS> 1023 <IDE> Urban Decay
Eyeshadow Palette Naked Heat <AS> Makeup <AE> <AS> Eyes
<AE>”, where “<IDS>, <IDE>, <AS>, <AE>” are the special tokens
that indicate the start and the end of each ID and �ne-grained
attribute, respectively. The �attened identi�er will then be stored in
the Wavelet Tree [16]. Given a start token (e.g., “BOS”) or a token
sequence, the FM-index can �nd a list of all possible successor
tokens in$ (+ log(+ )), where+ is the vocabulary size of the LLMs.
• Identi�er generation. Given the user’s historical interactions in
the format of instruction input as in Figure 4, TransRec generates
valid identi�ers in each facet via constrained beam search [10]
based on the FM-index. By constraining the starting token of
generation, e.g., “<IDS>”, and the ending token of generation, e.g.,
“<IDE>”, TransRec generates a set of valid ID identi�ers and attribute
identi�ers that belongs to the items (see Figure 5). Besides, TransRec
generates valid substrings of title identi�ers from any position
through FM-index, and we do not need to set special start and
end tokens for the title. The position-free generation ability of
LLMs is also enhanced by the instruction tuning process, where
substrings are set as the instruction output (cf. Section 3.1.1). We
follow [4] to keep track of all the partially decoded sequences and
obtain a set of generated identi�ers for each facet. We denote the
generated identi�ers for ID, title, and attribute facets as P6 , T6 , and
A6 , respectively.

3.2.2 Aggregated Grounding. To ground the generated iden-
ti�ers to the in-corpus items and also rank in-corpus items for
recommendations, we introduce an aggregated grounding module,
which contains intra-facet and inter-facet aggregations.
• Intra-facet aggregation.We �rst ground the generated identi-
�ers within each facet to the in-corpus items. Speci�cally, given the
generated identi�ers of one facet (e.g., T6), we can aggregate them to
the in-corpus item based on their coverage on each item’s identi�er
(e.g., T6 \) ). However, directly summing up the identi�er scores5
in the coverage set is infeasible due to the monotonic probability
decrease in autoregressive generation [4]. For example, “51770” will
have a smaller probability than “517”, thus hindering the accurate
4Other potential Trie algorithms in existing constrained generation merely allow
starting from the �rst token of valid identi�ers [7, 19].
5Here, the identi�er score is the probability of generated identi�er given by LLMs.
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q RQ1: How does our proposed TransRec perform compared to both traditional and LLM-based recommenders?
q Full training

• Superior performance compared to both traditional models and LLM-based models.
• The superiority of TransRec is attributed to 1) the utilization of multi-facet identifiers to simultaneously

achieve semantics and distinctiveness. 2) the constrained and position-free generation for in-corpus item
generation and mitigate the over-reliance on initial tokens.
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TransRec-B: TransRec instantiated on BART
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Table 1: Overall performance comparison between the baselines and TransRec instantiated on BART on three datasets. The best
results are highlighted in bold and the second-best results are underlined. * implies the improvements over the second-best
results are statistically signi�cant (?-value < 0.01) under one-sample t-tests.

Beauty Toys Yelp
Model R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10
MF 0.0294 0.0474 0.0145 0.0191 0.0236 0.0355 0.0153 0.0192 0.0220 0.0381 0.0138 0.0190
LightGCN 0.0305 0.0511 0.0194 0.0260 0.0322 0.0508 0.0215 0.0275 0.0255 0.0427 0.0163 0.0218
SASRec 0.0380 0.0588 0.0246 0.0313 0.0470 0.0659 0.0312 0.0373 0.0183 0.0296 0.0116 0.0152
DCRec 0.0452 0.0635 0.0327 0.0385 0.0498 0.0674 0.0335 0.0406 0.0207 0.0328 0.0115 0.0154
ACVAE 0.0503 0.0710 0.0356 0.0422 0.0488 0.0679 0.0350 0.0411 0.0211 0.0356 0.0127 0.0174

P5 0.0059 0.0107 0.0033 0.0048 0.0031 0.0069 0.0022 0.0034 0.0039 0.0062 0.0024 0.0031
SID 0.0350 0.0494 0.0254 0.0301 0.0164 0.0218 0.0120 0.0139 0.0218 0.0332 0.0161 0.0187
SemID+IID 0.0290 0.0429 0.0200 0.0245 0.0145 0.0260 0.0069 0.0123 0.0196 0.0304 0.0141 0.0160
CID+IID 0.0484 0.0703 0.0337 0.0412 0.0169 0.0276 0.0104 0.0154 0.0265 0.0417 0.0184 0.0233
TIGER 0.0377 0.0567 0.0249 0.0310 0.0278 0.0426 0.0176 0.0223 0.0183 0.0298 0.0119 0.0156
TransRec-B 0.0504 0.0735* 0.0365* 0.0450* 0.0518* 0.0764* 0.0360* 0.0420* 0.0354* 0.0457* 0.0262* 0.0306*

4.1.3 Implementation Details. We employ BART and LLaMA
as backbone LLMs for TransRec, and we denote the two variants
as “TransRec-B” and “TransRec-L”, respectively. For TransRec-B,
we follow [15, 26] to sample subsequences of user’s interactions
for training, which is widely used in sequential recommender mod-
els [21]. As for LLaMA, the training on subsequences is involved in
the training objectives of decoder-only architecture [65], and only
use the entire user sequence for training. Besides, for each user’s
interaction sequence, we iteratively discard the �rst item in the
sequence until the length of instruction input does not exceed the
maximum input length of LLMs (1024 for BART and 512 for LLaMA).
TransRec is trained with Adam [28] (TransRec-B) and AdamW [40]
(TransRec-L) on four NVIDIA RTX A5000 GPUs. We fully tune
the model parameters of TransRec-B and perform the parameter-
e�cient �ne-tuning technique LoRA [25] to tune TransRec-L. LLM-
based recommender baselines are developed on T5 [43] as in
their papers, and we follow their implementations [15, 26, 44] for
experiments. For a fair comparison, we set the beam size to 20 for
TransRec and all LLM-based baselines. Detailed hyper-parameter
settings for baselines and TransRec are presented in Appendix A.3.

4.2 Overall Performance (RQ1)
The results of the baselines and TransRec with BART as the
backbone model under the full training setting are presented in
Table 1, from which we have the following observations:
• Among traditional recommenders, sequential methods (SASRec,

ACVAE, DCRec) surpass non-sequential methods (MF and Light-
GCN) on both Beauty and Toys. The better performance stems
from the sequential modeling of the user’s interaction sequence,
which captures dynamic shifts in user interests and intricate
item dependencies. Moreover, ACVAE usually outperforms
other traditional recommenders. This is because adversarial
training and contrastive learning encourage high-quality user
representation and enhance the discriminability between items.

• CID+IID consistently yields better performance than SemID+IID,
which is consistent with the �ndings in [26]. This is reasonable
since CID+IID leverages the co-occurrence of items to construct
hierarchical numeric IDs, i.e., itemswith similar interactions have
similar IDs. As such, the IDs are integrated with collaborative
information, which strengthens the key advantage of ID-based

identi�ers. In contrast, SemID+IID simply constructs IDs based
on items’ meta information, i.e., items with similar semantics
have similar identi�ers. However, this can lead to misalignment
between item identi�ers and user behavior, thus degrading the
performance (cf. Section 1).

• TIGER usually achieves comparable performance to most of the
traditional recommenders and surpasses SemID+IID on both
Beauty and Toys. The better performance is attributed to 1) the
additional utilization of description for capturing semantics; and
2) the learnable codebook to learn nuanced semantics compared
to the manually de�ned semantic IDs (SemID+IID). Besides, it
is noted that P5 yields unsatisfactory performance on the three
datasets. We believe that the inconsistency with the observations
in their paper is because of the sequential indexing strategy,
which potentially leads to data leakage [44].

• TransRec consistently yields the best performance across the
three datasets, validating the superiority of our proposed tran-
sition paradigm. Notably, TransRec outperforms LLM-based
recommenders by a large margin without requiring information
on cold-start items to construct item identi�ers. This further
demonstrates the strong generalization ability of TransRec (see
more analysis on the generalization of TransRec inAppendix A.5).
The superiority of TransRec is attributed to 1) the utilization of
multi-facet identi�ers, which simultaneously satis�es semantics
and distinctiveness, potentially leveraging the rich knowledge in
LLMs and capturing salient item features; and 2) the constrained
and position-free generation that guarantees in-corpus item
generation and mitigates the over-reliance on initial tokens.

4.3 In-depth Analysis
We conduct further experiments to investigate the performance
of TransRec under limited data with warm- and cold-start testing.
Additionally, we assess the e�ect of each component of TransRec
and the hyper-parameters.

4.3.1 Few-shot Training (RQ2). To study how TransRec per-
forms under limited data, we conduct few-shot training with
randomly selected # users’ interactions, where # is set as 1024
or 2048. To evaluate the models, we involve # users in few-shot
training (i.e., warm-start users) and another randomly selected #
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q Strong generalization ability

*  The bold results highlight the superior performance compared to the best LLM-
based recommender baseline.

• Few-shot training 
• warm- and cold-start testing

• User group analysis
• from dense users to sparse users

• Remarkable generalization ability of LLMs with vase knowledge base, especially on cold-start recommendation 
under limited data.

• On user side, TransRec significantly improves the performance of sparse users with fewer interactions.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Performance comparison under the few-shot set-
ting. The bold results highlight the superior performance
compared to the best LLM-based recommender baseline.
“TransRec-B” and “TransRec-L” denote using BART and
LLaMA as backbone LLM, respectively.

Warm Cold
N-shot Model R@5 N@5 R@5 N@5

1024

LightGCN 0.0205 0.0125 0.0005 0.0003
ACVAE 0.0098 0.0057 0.0047 0.0026
CID+IID 0.0100 0.0066 0.0085 0.0071
TransRec-B 0.0042 0.0028 0.0029 0.0021
TransRec-L 0.0141 0.0070 0.0159 0.0097

2048

LightGCN 0.0186 0.0117 0.0005 0.0004
ACVAE 0.0229 0.0136 0.0074 0.0044
CID+IID 0.0150 0.0101 0.0078 0.0062
TransRec-B 0.0057 0.0031 0.0045 0.0026
TransRec-L 0.0194 0.0112 0.0198 0.0124

users that have not been seen in few-shot training (i.e., cold-start
users) for testing. In addition, we split the testing set into warm
and cold sets, where interactions between warm-start users and
warm-start items belong to the warm set, otherwise the cold set.

We compare both TransRec-B and TransRec-L with competitive
baselines from both traditional and LLM-based recommenders.
The results on warm and cold sets over Beauty10 are presented
in Table 2. From the table, we can observe the following. 1)
Traditional methods yield competitive performance on warm-
start recommendation. This is because these ID-based methods
are e�ective in capturing collaborative information from user-
item interactions, which is also consistent with our statements
in Section 3.1.1. ACVAE yields better performance on cold sets, as
it discards user embedding, enabling e�ective generalization for
cold-start users. 2) Medium-sized LLMs (CID+IID and TransRec-
B) fail to generalize well to the recommendation task under few-
shot training. This indicates that a considerable amount of data
is necessary to adapt medium-sized LLMs to perform well on
recommendation tasks, which is also consistent with previous
work [1]. The better performance of CID+IID compared to TransRec-
B possibly arises from the utilization of all item information to
assign identi�ers, as opposed to our strict reliance solely on the
natural ID, title, and attributes of warm items. 3) Notably, TransRec-
L outperforms all the baselines, particularly surpassing by a large
margin on the cold-start recommendation. This highlights the
remarkable generalization ability of recently emerged LLMs with
vast knowledge base, enabling more e�ective adaptation to the
recommendation task with limited data.

4.3.2 Ablation Study (RQ3). To analyze the e�ect of each facet
in multi-facet identi�ers, we remove the ID, title, and attribute
separately, referred to as “w/o ID”, “w/o title”, and “w/o attribute”,
respectively. In addition, we disable the FM-index and conduct
unconstrained generation, denoted as “w/o FM-index”. Results on
Beauty are presented in Figure 6, and we omit the results on Toys
and Yelp with similar observations to save space. From the �gure,
we can �nd that: 1) removing either ID, title, or attribute facet
will decrease the performance, indicating the e�ectiveness of each
facet in representing an item for LLM-based recommendation. 2)
10Results on Yelp and Toys with similar observations are omitted to save space.
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Figure 6: Ablation study of each facet (i.e., ID, title, and
attribute) of multi-facet identi�er and the FM-index.

Table 3: Performance comparison of di�erent grounding
strategies. “Time” denotes the time cost of the grounding
process per 5,000 users.

Beauty
R@5" R@10" N@5" N@10" Time#

Dot Product 0.0016 0.002 0.0013 0.0014 571.07 s
Cosine Sim 0.0096 0.0121 0.0095 0.0101 578.89 s
L2 Distance 0.0201 0.0212 0.0148 0.0161 577.64 s
TransRec 0.0504 0.0735 0.0365 0.0450 218.43 s

Discarding the ID or title facet typically results in more signi�cant
performance reductions compared to removing the attribute facet.
This is reasonable since removing IDs falls short of meeting dis-
tinctiveness criteria for identi�ers, hindering LLMs from capturing
salient features of items. Meanwhile, titles tend to possess more
intricate semantics than attributes, exerting a more signi�cant
e�ect on enhancing recommendations. 3) It is not surprising that
removing FM-index fails to give appropriate recommendations
(inferior performance of “w/o FM-index”), because it may generate
our-of-corpus identi�ers. This implies the necessity of position-free
constrained generation.
• E�ect of grounding strategies. We also compare the ag-
gregated grounding module of TransRec with three potential
grounding strategies. Following [1], we utilize LLMs to extract
the representations of generated identi�ers and the identi�ers of
in-corpus items, respectively. We then calculate the dot product,
the negative L2 distance, and the cosine similarity between the
generated identi�ers and each in-corpus item as the grounding
score for each in-corpus item, respectively, as three strategies.
For a fair comparison, we also consider balancing the strength
between di�erent facets for the three strategies. From the results in
Table 3, we can observe that 1) potential grounding strategies fail
to yield satisfying results. This is because these strategies utilize
the representations extracted from LLMs, thus relying heavily on
the semantics similarity. As such, they may inaccurately ground
the generated tokens that lack meaningful semantics to the valid
identi�ers. 2) TransRec is more time-e�cient compared to other
grounding strategies. Because the three strategies introduce extra
LLMs’ forward process for extracting the representations, causing
high computation burdens.

4.3.3 Hyper-parameter Analysis. We conduct experiments to
study the sensitivity of these hyper-parameters, to facilitate future
applications of TransRec. The performance of TransRec with
di�erent values of W and 1�⇡ are presented in Figure 7. From
Figure 7(a), we can �nd that 1) as W varies from 1 to 3, the
performance gradually improves. The possible reason is that the
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Table 5: Statistics of three datasets.
Dataset # User # Item # Interaction Density (%)
Beauty 22,363 12,101 198,502 0.0734
Toys 19,412 11,924 167,597 0.0724
Yelp 30,431 20,033 316,354 0.0519
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Figure 8: Performance over user groupswith di�erent lengths
of historical interaction sequence.

signi�cantly bene�ting the prediction accuracy of the testing item.
However, such bene�ts are from the consecutive numbers, which
are unattainable during the indexing process in real-world scenarios.
More detailed discussion and experimental �ndings can be found
in [44].

To solve this issue, we adopt the datasets in P5 for experiments
but rearrange the numeric ID for items with random numeric ID
instead of consecutive IDs for both our method and P5.

A.5 User Group Evaluation
To analyze how TransRec improves the performance and the
generalization ability of LLM-based recommenders, we test the
performance of TransRec over di�erent sparsity of users and
compare it with the best baseline P5. Speci�cally, we divide the users
into three groups according to the sequence length of historical
interactions. We select users with interactions larger or equal to 8
into group 1, denoted as “G1”; and then split the rest of the users
with interactions larger or equal to 4 into group 2, otherwise group
3, denoted as “G2”, and “G3”, respectively. As such, from G1 to
G3, the user sparsity increases. The results of the three groups on
Beauty are presented in Figure 8. We can �nd that: 1) From G1 to G3,
the performance of both P5 and TransRec decreases. This makes
sense because it can be di�cult to capture the user preference shifts

from only a small number of interactions. Nevertheless, 2) TransRec
consistently outperforms P5 under di�erent levels of user sparsity.
In particular, TransRec improves the performance of sparse users
remarkably by a large margin (signi�cant improvements on “G3”),
indicating the strong generalization ability of TransRec.
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Figure 9: E�ect of 1C8C;4 and 10CCA81DC4 in TransRec.

A.6 Hyper-parameter Analysis
• E�ect of bias for title facet. We vary the bias for the title
facet i.e., 1C8C;4 , and present the results in Figure 9. From Figure 9(a),
we can observe that TransRec achieves the best performance when
1C8C;4 = 0, indicating that bias for the title facet may not necessarily
need careful adjustment. One possible reason is that titles usually
contain common words, resulting in a mild gap between the pre-
training data and the titles. In contrast, IDs that are less common
in pre-training data probably lead to a larger gap between the pre-
training data and the identi�ers, thereby requiring a larger bias
to improve the strength of the ID facet. This is also evidenced by
Figure 7(b), where TransRec achieves the best performance when
1�⇡ = 5.
• E�ect of bias for attribute facet. The results of di�erent bias
values for the attribute facet 10CCA81DC4 are reported in Figure 9(b).
From the results, we can �nd that 1) gradually increasing the bias
for the attribute facet does not a�ect the performance too much,
indicating that TransRec might be less sensitive to the attribute
strength. This is reasonable since attribute entails some coarse-
grained semantics, such as category, and color, which can be shared
by extensive items. 2) Similar to the ID facet, strengthening either
the attribute or title facet too much can hurt the performance.
The reason is that letting the title or attribute facet dominate the
grounding can decrease item discriminability.
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Following this direction, many promising ideas deserve further exploration:

q although incorporating ID, title, and attribute is effective, it is worthwhile to automatically 
construct multi-facet identifiers to reduce the noises in natural descriptions;

q it is meaningful to devise better strategies for grounding modules, to effectively combine 
the ranking scores from different facets, such as using neural models in an end-to-end 
learning manner.

Future Work
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